Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      MLC tracking for Elekta VMAT: a modelling study.

      Physics in medicine and biology
      Algorithms, Humans, Lung Neoplasms, physiopathology, radiotherapy, Models, Biological, Movement, Radiotherapy Dosage, Radiotherapy Planning, Computer-Assisted, Radiotherapy, Computer-Assisted, methods, Reproducibility of Results, Time Factors

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A model has been developed to simulate volumetric modulated arc therapy (VMAT) delivery for Elekta control systems. The model was experimentally validated for static-tumour VMAT delivery and has been applied to the investigation of motion compensation with dynamic multileaf collimator (dMLC) delivery tracking for a series of VMAT lung treatment plans at various control point spacings for five patients. The relative increase in treatment time with dMLC tracking was calculated for four 1D rigid-body motion trajectories, and the effect of the control point spacing, the MLC leaf speed and an increased number of dose levels on the dMLC tracking delivery time evaluated. It has been observed that a faster leaf speed is advantageous for motion trajectories with shorter time periods and larger amplitudes. The accuracy of dMLC tracking was found to increase with a decreased control point spacing and is dependent on the amplitude and time period of the motion trajectory of the target. dMLC tracking is shown to be a promising emerging technology which can confer advantage over breath-hold motion-compensation techniques which more drastically reduce the efficiency of VMAT and are more invasive for the patient.

          Related collections

          Author and article information

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content637

          Cited by5