6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Noninvasive Early Disease Diagnosis by Electronic-Nose and Related VOC-Detection Devices

      editorial

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This editorial provides an overview and summary of recent research articles published in Biosensors journal, volumes 9 (2019) and 10 (2020), within the Special Issue “ Noninvasive Early Disease Diagnosis”, which focused on recent sensors, biosensors, and clinical instruments developed for the noninvasive early detection and diagnosis of human, animal, and plant diseases or invasive pests. The six research articles included in this Special Issue provide examples of some of the latest electronic-nose (e-nose) and related volatile organic compound (VOC)-detection technologies, which are being tested and developed to improve the effectiveness and efficiency of innovative diagnostic methodologies for the early detection of particular diseases and pest infestations in living hosts, prior to symptom development.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Breath Analysis Using eNose and Ion Mobility Technology to Diagnose Inflammatory Bowel Disease—A Pilot Study

          Early diagnosis of inflammatory bowel disease (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC), remains a clinical challenge with current tests being invasive and costly. The analysis of volatile organic compounds (VOCs) in exhaled breath and biomarkers in stool (faecal calprotectin (FCP)) show increasing potential as non-invasive diagnostic tools. The aim of this pilot study is to evaluate the efficacy of breath analysis and determine if FCP can be used as an additional non-invasive parameter to supplement breath results, for the diagnosis of IBD. Thirty-nine subjects were recruited (14 CD, 16 UC, 9 controls). Breath samples were analysed using an in-house built electronic nose (Wolf eNose) and commercial gas chromatograph–ion mobility spectrometer (G.A.S. BreathSpec GC-IMS). Both technologies could consistently separate IBD and controls [AUC ± 95%, sensitivity, specificity], eNose: [0.81, 0.67, 0.89]; GC-IMS: [0.93, 0.87, 0.89]. Furthermore, we could separate CD from UC, eNose: [0.88, 0.71, 0.88]; GC-IMS: [0.71, 0.86, 0.62]. Including FCP did not improve distinction between CD vs. UC; eNose: [0.74, 1.00, 0.56], but rather, improved separation of CD vs. controls and UC vs. controls; eNose: [0.77, 0.55, 1.00] and [0.72, 0.89, 0.67] without FCP, [0.81, 0.73, 0.78] and [0.90, 1.00, 0.78] with FCP, respectively. These results confirm the utility of breath analysis to distinguish between IBD-related diagnostic groups. FCP does not add significant diagnostic value to breath analysis within this study.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Faecal Scent as a Novel Non-Invasive Biomarker to Discriminate between Coeliac Disease and Refractory Coeliac Disease: A Proof of Principle Study

            Currently, the gold standard for diagnosis of coeliac disease (CD) is based on serology and gastroduodenoscopy with histology of duodenal mucosal biopsies. The aim of this study was to evaluate the potential of faecal volatile organic compounds (VOCs) analysis as a novel, non-invasive tool to discriminate between CD in remission in patients on a gluten-free diet (GFD), refractory coeliac disease (RCD) and controls without CD. Patients with an established diagnosis of CD on a GFD, RCD and healthy controls (HC) were instructed to collect a faecal sample. All subjects completed questionnaires on clinical symptoms, lifestyle and dietary information. Faecal VOCs were measured using gas chromatography-ion mobility spectrometry. A total of 13 CD, 7 RCD and 10 HC were included. A significant difference in VOC profiles between CD and RCD patients (area under the curve (AUC) ± 95% CI: 0.91 (0.79–1) p = 0.000) and between CD and HC (AUC ± 95% CI: 0.71 (0.51–0.91) p = 0.0254) was observed. We found no significant differences between faecal VOC patterns of HC and RCD. Based on faecal VOCs, CD could be discriminated from RCD and HC. This implies that faecal VOC analysis may hold potential as a novel non-invasive biomarker for RCD. Future studies should encompass a larger cohort to further investigate and validate this prior to application in clinical practice.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Detection of Wound Infection by Ion Mobility Chemical Analysis

              Surgical site infection represents a large burden of care in the National Health Service. Current methods for diagnosis include a subjective clinical assessment and wound swab culture that may take several days to return a result. Both techniques are potentially unreliable and result in delays in using targeted antibiotics. Volatile organic compounds (VOCs) are produced by micro-organisms such as those present in an infected wound. This study describes the use of a device to differentiate VOCs produced by an infected wound vs. colonised wound. Malodourous wound dressings were collected from patients, these were a mix of post-operative wounds and vascular leg ulcers. Wound microbiology swabs were taken and antibiotics commenced as clinically appropriate. A control group of soiled, but not malodorous wound dressings were collected from patients who had a split skin graft (SSG) donor site. The analyser used was a G.A.S. GC-IMS. The results from the samples had a sensitivity of 100% and a specificity of 88%, with a positive predictive value of 90%. An area under the curve (AUC) of 91% demonstrates an excellent ability to discriminate those with an infected wound from those without. VOC detection using GC-IMS has the potential to serve as a diagnostic tool for the differentiation of infected and non-infected wounds and facilitate the treatment of wound infections that is cost effective, non-invasive, acceptable to patients, portable, and reliable.
                Bookmark

                Author and article information

                Journal
                Biosensors (Basel)
                Biosensors (Basel)
                biosensors
                Biosensors
                MDPI
                2079-6374
                06 July 2020
                July 2020
                : 10
                : 7
                : 73
                Affiliations
                Pathology Department, Southern Hardwoods Laboratory, Center for Bottomland Hardwoods Research, Southern Research Station, USDA Forest Service, 432 Stoneville Road, Stoneville, MS 38776, USA; dan.wilson2@ 123456usda.gov ; Tel.: +1-662-336-4809
                Author information
                https://orcid.org/0000-0003-2352-5232
                Article
                biosensors-10-00073
                10.3390/bios10070073
                7400621
                32640592
                bdac6012-b208-44e3-92f0-40ec643c9502
                © 2020 by the author.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 01 July 2020
                : 01 July 2020
                Categories
                Editorial

                early disease detection,clinical pathology,electronic nose,disease diagnostics,point-of-care testing,chemical sensors,disease biomarkers,metabolomics,volatile organic compounds (vocs),white-nose syndrome,emerald ash borer

                Comments

                Comment on this article