20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Surgical oncology for gliomas: the state of the art

      ,
      Nature Reviews Clinical Oncology
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Surgical resection remains the mainstay of treatment for patients with glioma of any grade. Maximal resection of the tumour is central to achieving long-term disease control; however, the relationship between the extent of glioma resection and actual clinical benefit for the patient is predicated on the balance between cytoreduction and neurological morbidity. For the neurosurgical oncologist, the clinical rationale for undertaking increasingly extensive resections has gained traction. In parallel, novel surgical techniques and technologies have been developed that help improve patient outcomes. During the past decade, neurosurgeons have leveraged advanced intraoperative imaging methods, fluorescence-based tumour biomarkers, and real-time mutational analyses to maximize the extent of tumour resection. In addition, approaches to minimizing the risk of perioperative morbidity continue to be improved through the combined use of stimulation-mapping techniques, corticospinal tract imaging, and stereotactic thermal ablation. Taken together, these modern principles of neurosurgical oncology bear little resemblance to historical therapeutic strategies for patients with glioma and have dramatically altered the approach to the treatment of patients with these brain tumours. Herein, we outline the state of the art in surgical oncology for gliomas.

          Related collections

          Most cited references114

          • Record: found
          • Abstract: found
          • Article: not found

          Glioma extent of resection and its impact on patient outcome.

          There is still no general consensus in the literature regarding the role of extent of glioma resection in improving patient outcome. Although the importance of resection in obtaining tissue diagnosis and alleviating symptoms is clear, a lack of Class I evidence prevents similar certainty in assessing the influence of extent of resection. We reviewed every major clinical publication since 1990 on the role of extent of resection in glioma outcome. Twenty-eight high-grade glioma articles and 10 low-grade glioma articles were examined in terms of quality of evidence, expected extent of resection, and survival benefit. Despite persistent limitations in the quality of data, mounting evidence suggests that more extensive surgical resection is associated with longer life expectancy for both low- and high-grade gliomas.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Advances in the molecular genetics of gliomas — implications for classification and therapy

            In 2016, a revised WHO classification of glioma was published, in which molecular data and traditional histological information are incorporated into integrated diagnoses. Herein, the authors highlight the developments in our understanding of the molecular genetics of gliomas that underlie this classification, and review the current landscape of molecular biomarkers used in the classification of disease subtypes. In addition, they discuss how these advances can promote the development of novel pathogenesis-based therapeutic approaches, paving the way to precision medicine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Which elements are excited in electrical stimulation of mammalian central nervous system: a review.

              J Ranck (1975)
              (1) There are data on the amount of current necessary to stimulate a myelinated fiber or cell body and/or its axon a given distance away from a monopolar electrode over the entire range of practical interest for intracranial stimulation. Data do not exist for other electrode configurations. (2) Currents from a monopolar cathode of more than 8 times threshold may block action potentials in axons. Therefore, only axons lying in a shell around the electrode are stimulated. Elements very close to the electrode may not be stimulated. Close to an electrode small diameter axons may be stimulated and larger ones may not be. (3) Most, and perhaps all, CNS myelinated fibers have chronaxies of 50-100 musec. When gray matter is stimulated, the chronaxie is often 200-700 musec. It is not clear what is being stimulated in this case. Current-duration relations should be determined for many more responses. (4) There are no current-distance or current-duration data for central finely myelinated or unmyelinated fibers. (5) It takes less cathodal current than anodal to stimulate a myelinated fiber passing by a monopolar electrode. When a monopolar electrode is near a cell body, on the opposite side from the axon, often the lowest threshold is anodal, but sometimes cathodal. Stimulation of a neuron near its cell body is not well understood, but in many cases the axon is probably stimulated. (6) Orientation of cell body and axons with respect to current flow is important. For an axon it is the component of the voltage gradient parallel to the fiber that is important. (7) The pia has a significant resistance and capacitance. Gray matter, white matter, and cerebrospinal fluid have different resistivities, which affect patterns of current flow. (8) More is known about stimulation of mammalian CNS than most workers are aware of. Much of what is unknown seems solvable with current methods.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Clinical Oncology
                Nat Rev Clin Oncol
                Springer Nature
                1759-4774
                1759-4782
                November 21 2017
                November 21 2017
                :
                :
                Article
                10.1038/nrclinonc.2017.171
                29158591
                bd7cd408-49a3-4c94-982b-f3ab03e6b9a0
                © 2017
                History

                Comments

                Comment on this article