4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tumor Heterogeneity in Glioblastomas: From Light Microscopy to Molecular Pathology

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          Glioblastomas (GBMs) are the most frequent and aggressive malignant tumors arising in the human brain. One of the main reasons for GBM aggressiveness is its diverse cellular composition, comprised by differentiated tumor cells, tumor stem cells, cells from the blood vessels, and inflammatory cells, which simultaneously affect multiple cellular functions involved in cancer development. “Tumor Heterogeneity” usually encompasses both inter-tumor heterogeneity, differences observed at population level; and intra-tumor heterogeneity, differences among cells within individual tumors, which directly affect outcomes and response to treatment. In this review, we briefly describe the evolution of GBM classification yielded from inter-tumor heterogeneity studies and discuss how the technological development allows for the characterization of intra-tumor heterogeneity, beginning with differences based on histopathological features of GBM until the molecular alterations in DNA, RNA, and proteins observed at individual cells.

          Abstract

          One of the main reasons for the aggressive behavior of glioblastoma (GBM) is its intrinsic intra-tumor heterogeneity, characterized by the presence of clonal and subclonal differentiated tumor cell populations, glioma stem cells, and components of the tumor microenvironment, which affect multiple hallmark cellular functions in cancer. “Tumor Heterogeneity” usually encompasses both inter-tumor heterogeneity (population-level differences); and intra-tumor heterogeneity (differences within individual tumors). Tumor heterogeneity may be assessed in a single time point (spatial heterogeneity) or along the clinical evolution of GBM (longitudinal heterogeneity). Molecular methods may detect clonal and subclonal alterations to describe tumor evolution, even when samples from multiple areas are collected in the same time point (spatial-temporal heterogeneity). In GBM, although the inter-tumor mutational landscape is relatively homogeneous, intra-tumor heterogeneity is a striking feature of this tumor. In this review, we will address briefly the inter-tumor heterogeneity of the CNS tumors that yielded the current glioma classification. Next, we will take a deeper dive in the intra-tumor heterogeneity of GBMs, which directly affects prognosis and response to treatment. Our approach aims to follow technological developments, allowing for characterization of intra-tumor heterogeneity, beginning with differences on histomorphology of GBM and ending with molecular alterations observed at single-cell level.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: found

          Hallmarks of Cancer: The Next Generation

          The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma

            Glioblastoma, the most common primary brain tumor in adults, is usually rapidly fatal. The current standard of care for newly diagnosed glioblastoma is surgical resection to the extent feasible, followed by adjuvant radiotherapy. In this trial we compared radiotherapy alone with radiotherapy plus temozolomide, given concomitantly with and after radiotherapy, in terms of efficacy and safety. Patients with newly diagnosed, histologically confirmed glioblastoma were randomly assigned to receive radiotherapy alone (fractionated focal irradiation in daily fractions of 2 Gy given 5 days per week for 6 weeks, for a total of 60 Gy) or radiotherapy plus continuous daily temozolomide (75 mg per square meter of body-surface area per day, 7 days per week from the first to the last day of radiotherapy), followed by six cycles of adjuvant temozolomide (150 to 200 mg per square meter for 5 days during each 28-day cycle). The primary end point was overall survival. A total of 573 patients from 85 centers underwent randomization. The median age was 56 years, and 84 percent of patients had undergone debulking surgery. At a median follow-up of 28 months, the median survival was 14.6 months with radiotherapy plus temozolomide and 12.1 months with radiotherapy alone. The unadjusted hazard ratio for death in the radiotherapy-plus-temozolomide group was 0.63 (95 percent confidence interval, 0.52 to 0.75; P<0.001 by the log-rank test). The two-year survival rate was 26.5 percent with radiotherapy plus temozolomide and 10.4 percent with radiotherapy alone. Concomitant treatment with radiotherapy plus temozolomide resulted in grade 3 or 4 hematologic toxic effects in 7 percent of patients. The addition of temozolomide to radiotherapy for newly diagnosed glioblastoma resulted in a clinically meaningful and statistically significant survival benefit with minimal additional toxicity. Copyright 2005 Massachusetts Medical Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Signatures of mutational processes in human cancer

              All cancers are caused by somatic mutations. However, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here, we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, kataegis, is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer with potential implications for understanding of cancer etiology, prevention and therapy.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                12 February 2021
                February 2021
                : 13
                : 4
                : 761
                Affiliations
                [1 ]Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA; Saikh.Haque@ 123456osumc.edu (S.J.H.); Arnab.Chakravarti@ 123456osumc.edu (A.C.)
                [2 ]St. Louis School of Medicine, St. Louis, MO 63310, USA; blake.sells@ 123456wustl.edu
                Author notes
                Author information
                https://orcid.org/0000-0002-8695-810X
                https://orcid.org/0000-0002-4500-1256
                Article
                cancers-13-00761
                10.3390/cancers13040761
                7918815
                33673104
                e32afdbf-4d9f-448f-b50a-9b9605d7223e
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 15 January 2021
                : 08 February 2021
                Categories
                Review

                glioblastoma,tumor microenvironment,precision medicine,glioma,neoplastic stem cells,prognosis,tumor heterogeneity,review

                Comments

                Comment on this article