18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Glioblastoma and Other Primary Brain Malignancies in Adults : A Review

      1 , 2 , 1 , 2 , 3 , 4
      JAMA
      American Medical Association (AMA)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Importance

          Malignant primary brain tumors cause more than 15 000 deaths per year in the United States. The annual incidence of primary malignant brain tumors is approximately 7 per 100 000 individuals and increases with age. Five-year survival is approximately 36%.

          Observations

          Approximately 49% of malignant brain tumors are glioblastomas, and 30% are diffusely infiltrating lower-grade gliomas. Other malignant brain tumors include primary central nervous system (CNS) lymphoma (7%) and malignant forms of ependymomas (3%) and meningiomas (2%). Symptoms of malignant brain tumors include headache (50%), seizures (20%-50%), neurocognitive impairment (30%-40%), and focal neurologic deficits (10%-40%). Magnetic resonance imaging before and after a gadolinium-based contrast agent is the preferred imaging modality for evaluating brain tumors. Diagnosis requires tumor biopsy with consideration of histopathological and molecular characteristics. Treatment varies by tumor type and often includes a combination of surgery, chemotherapy, and radiation. For patients with glioblastoma, the combination of temozolomide with radiotherapy improved survival when compared with radiotherapy alone (2-year survival, 27.2% vs 10.9%; 5-year survival, 9.8% vs 1.9%; hazard ratio [HR], 0.6 [95% CI, 0.5-0.7]; P < .001). In patients with anaplastic oligodendroglial tumors with 1p/19q codeletion, probable 20-year overall survival following radiotherapy without vs with the combination of procarbazine, lomustine, and vincristine was 13.6% vs 37.1% (80 patients; HR, 0.60 [95% CI, 0.35-1.03]; P = .06) in the EORTC 26951 trial and 14.9% vs 37% in the RTOG 9402 trial (125 patients; HR, 0.61 [95% CI, 0.40-0.94]; P = .02). Treatment of primary CNS lymphoma includes high-dose methotrexate-containing regimens, followed by consolidation therapy with myeloablative chemotherapy and autologous stem cell rescue, nonmyeloablative chemotherapy regimens, or whole brain radiation.

          Conclusions and Relevance

          The incidence of primary malignant brain tumors is approximately 7 per 100 000 individuals, and approximately 49% of primary malignant brain tumors are glioblastomas. Most patients die from progressive disease. First-line therapy for glioblastoma is surgery followed by radiation and the alkylating chemotherapeutic agent temozolomide.

          Related collections

          Most cited references108

          • Record: found
          • Abstract: found
          • Article: not found

          Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma

          Glioblastoma, the most common primary brain tumor in adults, is usually rapidly fatal. The current standard of care for newly diagnosed glioblastoma is surgical resection to the extent feasible, followed by adjuvant radiotherapy. In this trial we compared radiotherapy alone with radiotherapy plus temozolomide, given concomitantly with and after radiotherapy, in terms of efficacy and safety. Patients with newly diagnosed, histologically confirmed glioblastoma were randomly assigned to receive radiotherapy alone (fractionated focal irradiation in daily fractions of 2 Gy given 5 days per week for 6 weeks, for a total of 60 Gy) or radiotherapy plus continuous daily temozolomide (75 mg per square meter of body-surface area per day, 7 days per week from the first to the last day of radiotherapy), followed by six cycles of adjuvant temozolomide (150 to 200 mg per square meter for 5 days during each 28-day cycle). The primary end point was overall survival. A total of 573 patients from 85 centers underwent randomization. The median age was 56 years, and 84 percent of patients had undergone debulking surgery. At a median follow-up of 28 months, the median survival was 14.6 months with radiotherapy plus temozolomide and 12.1 months with radiotherapy alone. The unadjusted hazard ratio for death in the radiotherapy-plus-temozolomide group was 0.63 (95 percent confidence interval, 0.52 to 0.75; P<0.001 by the log-rank test). The two-year survival rate was 26.5 percent with radiotherapy plus temozolomide and 10.4 percent with radiotherapy alone. Concomitant treatment with radiotherapy plus temozolomide resulted in grade 3 or 4 hematologic toxic effects in 7 percent of patients. The addition of temozolomide to radiotherapy for newly diagnosed glioblastoma resulted in a clinically meaningful and statistically significant survival benefit with minimal additional toxicity. Copyright 2005 Massachusetts Medical Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The 2021 WHO Classification of Tumors of the Central Nervous System: a summary

            The fifth edition of the WHO Classification of Tumors of the Central Nervous System (CNS), published in 2021, is the sixth version of the international standard for the classification of brain and spinal cord tumors. Building on the 2016 updated fourth edition and the work of the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy, the 2021 fifth edition introduces major changes that advance the role of molecular diagnostics in CNS tumor classification. At the same time, it remains wedded to other established approaches to tumor diagnosis such as histology and immunohistochemistry. In doing so, the fifth edition establishes some different approaches to both CNS tumor nomenclature and grading and it emphasizes the importance of integrated diagnoses and layered reports. New tumor types and subtypes are introduced, some based on novel diagnostic technologies such as DNA methylome profiling. The present review summarizes the major general changes in the 2021 fifth edition classification and the specific changes in each taxonomic category. It is hoped that this summary provides an overview to facilitate more in-depth exploration of the entire fifth edition of the WHO Classification of Tumors of the Central Nervous System.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial.

              In 2004, a randomised phase III trial by the European Organisation for Research and Treatment of Cancer (EORTC) and National Cancer Institute of Canada Clinical Trials Group (NCIC) reported improved median and 2-year survival for patients with glioblastoma treated with concomitant and adjuvant temozolomide and radiotherapy. We report the final results with a median follow-up of more than 5 years. Adult patients with newly diagnosed glioblastoma were randomly assigned to receive either standard radiotherapy or identical radiotherapy with concomitant temozolomide followed by up to six cycles of adjuvant temozolomide. The methylation status of the methyl-guanine methyl transferase gene, MGMT, was determined retrospectively from the tumour tissue of 206 patients. The primary endpoint was overall survival. Analyses were by intention to treat. This trial is registered with Clinicaltrials.gov, number NCT00006353. Between Aug 17, 2000, and March 22, 2002, 573 patients were assigned to treatment. 278 (97%) of 286 patients in the radiotherapy alone group and 254 (89%) of 287 in the combined-treatment group died during 5 years of follow-up. Overall survival was 27.2% (95% CI 22.2-32.5) at 2 years, 16.0% (12.0-20.6) at 3 years, 12.1% (8.5-16.4) at 4 years, and 9.8% (6.4-14.0) at 5 years with temozolomide, versus 10.9% (7.6-14.8), 4.4% (2.4-7.2), 3.0% (1.4-5.7), and 1.9% (0.6-4.4) with radiotherapy alone (hazard ratio 0.6, 95% CI 0.5-0.7; p<0.0001). A benefit of combined therapy was recorded in all clinical prognostic subgroups, including patients aged 60-70 years. Methylation of the MGMT promoter was the strongest predictor for outcome and benefit from temozolomide chemotherapy. Benefits of adjuvant temozolomide with radiotherapy lasted throughout 5 years of follow-up. A few patients in favourable prognostic categories survive longer than 5 years. MGMT methylation status identifies patients most likely to benefit from the addition of temozolomide. EORTC, NCIC, Nélia and Amadeo Barletta Foundation, Schering-Plough.
                Bookmark

                Author and article information

                Journal
                JAMA
                JAMA
                American Medical Association (AMA)
                0098-7484
                February 21 2023
                February 21 2023
                : 329
                : 7
                : 574
                Affiliations
                [1 ]Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York
                [2 ]Department of Neurology, Weill Cornell Medicine, New York, New York
                [3 ]Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
                [4 ]Department of Pharmacology, Weill Cornell Medicine, New York, New York
                Article
                10.1001/jama.2023.0023
                36809318
                9e532380-9776-4f19-a737-fca73383a39e
                © 2023
                History

                Comments

                Comment on this article