3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Surface Modification of Poly(dimethylsiloxane) with Polydopamine and Hyaluronic Acid To Enhance Hemocompatibility for Potential Applications in Medical Implants or Devices

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          The pro- and anti-inflammatory properties of the cytokine interleukin-6.

          Interleukin-6 is a cytokine not only involved in inflammation and infection responses but also in the regulation of metabolic, regenerative, and neural processes. In classic signaling, interleukin-6 stimulates target cells via a membrane bound interleukin-6 receptor, which upon ligand binding associates with the signaling receptor protein gp130. Gp130 dimerizes, leading to the activation of Janus kinases and subsequent phosphorylation of tyrosine residues within the cytoplasmic portion of gp130. This leads to the engagement of phosphatase Src homology domains containing tyrosin phosphatase-2 (SHP-2) and activation of the ras/raf/Mitogen-activated protein (MAP) kinase (MAPK) pathway. In addition, signal transducer and activator of transcription factors are recruited, which are phosphorylated, and consequently dimerize whereupon they translocate into the nucleus and activate target genes. Interestingly, only few cells express membrane bound interleukin-6 receptor whereas all cells display gp130 on the cell surface. While cells, which only express gp130, are not responsive to interleukin-6 alone, they can respond to a complex of interleukin-6 bound to a naturally occurring soluble form of the interleukin-6 receptor. Therefore, the generation of soluble form of the interleukin-6 receptor dramatically enlarges the spectrum of interleukin-6 target cells. This process has been named trans-signaling. Here, we review the involvement of both signaling modes in the biology of interleukin-6. It turns out that regenerative or anti-inflammatory activities of interleukin-6 are mediated by classic signaling whereas pro-inflammatory responses of interleukin-6 are rather mediated by trans-signaling. This is important since therapeutic blockade of interleukin-6 by the neutralizing anti-interleukin-6 receptor monoclonal antibody tocilizumab has recently been approved for the treatment of inflammatory diseases. This article is part of a Special Issue entitled: 11th European Symposium on Calcium. 2011 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Macrophages in the pathogenesis of atherosclerosis.

            In atherosclerosis, the accumulation of apolipoprotein B-lipoproteins in the matrix beneath the endothelial cell layer of blood vessels leads to the recruitment of monocytes, the cells of the immune system that give rise to macrophages and dendritic cells. Macrophages derived from these recruited monocytes participate in a maladaptive, nonresolving inflammatory response that expands the subendothelial layer due to the accumulation of cells, lipid, and matrix. Some lesions subsequently form a necrotic core, triggering acute thrombotic vascular disease, including myocardial infarction, stroke, and sudden cardiac death. This Review discusses the central roles of macrophages in each of these stages of disease pathogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biomaterials in orthopaedics.

              At present, strong requirements in orthopaedics are still to be met, both in bone and joint substitution and in the repair and regeneration of bone defects. In this framework, tremendous advances in the biomaterials field have been made in the last 50 years where materials intended for biomedical purposes have evolved through three different generations, namely first generation (bioinert materials), second generation (bioactive and biodegradable materials) and third generation (materials designed to stimulate specific responses at the molecular level). In this review, the evolution of different metals, ceramics and polymers most commonly used in orthopaedic applications is discussed, as well as the different approaches used to fulfil the challenges faced by this medical field.
                Bookmark

                Author and article information

                Contributors
                Journal
                ACS Applied Materials & Interfaces
                ACS Appl. Mater. Interfaces
                American Chemical Society (ACS)
                1944-8244
                1944-8252
                October 04 2017
                September 25 2017
                October 04 2017
                : 9
                : 39
                : 33632-33644
                Affiliations
                [1 ]Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China
                [2 ]Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, China
                [3 ]Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
                [4 ]State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
                Article
                10.1021/acsami.7b10260
                28901742
                b7f44278-5118-4801-b933-8c76d40ab7ae
                © 2017
                History

                Comments

                Comment on this article