3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Simple poly(dimethylsiloxane) surface modification to control cell adhesion

      Surface and Interface Analysis
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references2

          • Record: found
          • Abstract: found
          • Article: not found

          Fibronectin immobilized by a novel surface treatment regulates fibroblast attachment and spreading.

          In order to understand the influence of cell-adhesive molecules on anchorage-dependent cell behavior on biomaterial surfaces, a model system is required where these molecules can be applied to surfaces with controlled surface ligand density and resistance to the adsorption of additional proteins present in the medium. This study asked whether fibronectin could be immobilized in a controlled manner to a hydrophobic surface with a chemically modified triblock surfactant. ELISA studies indicated that variation of the soluble fibronectin concentration used for immobilization could be used to control the amount of fibronectin immobilized to the surface. Furthermore, fibroblasts seeded on these surfaces in 10% serum-containing medium attached and spread as a function of the amount of immobilized fibronectin. Surfaces treated with unmodified surfactant did not support cell attachment, suggesting that cell attachment and spreading were primarily regulated by the immobilized fibronectin with minimal interference from adsorption of serum proteins. Together, these results suggest that covalent immobilization to Pluronic F108 provides a method for studying cellular responses to cell adhesive proteins with little interference from competing adsorbates, even in the presence of complex biological fluids such as serum. This technique may be applicable to a variety of existing hydrophobic biomedical polymers as a basic science tool as well as for influencing cell behavior at implant interfaces.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanism of initial attachment of corneal epithelial cells to polymeric surfaces.

            The initial attachment of cultured bovine corneal epithelial cells and stromal fibroblasts to two oxygen-containing synthetic polymers was studied. Cultured epithelial cells and stromal fibroblasts were seeded onto two oxygen-containing surfaces: 'tissue culture' polystyrene (TCPS) and a polymer film deposited by RF plasma deposition using a methylmethacrylate monomer (MMA/FEP). To establish the mechanism of cell attachment, the effect of the selective removal of the vitronectin and fibronectin from the serum used in the culture medium was tested. The attachment of cultured epithelial cells during the first 90 min of culture was reduced by 40% (TCPS)-80% (MMA/FEP) as a result of removing vitronectin from the medium. Attachment of these cells to TCPS was reduced by 85-95% when the serum was depleted of both fibronectin and vitronectin. However, depletion of fibronectin reduced cell attachment to TCPS by 20%, whilst on MMA/FEP cell attachment was equivalent, or higher, than that for intact serum. The attachment of cultured corneal stromal fibroblasts was similarly dependent on vitronectin but less dependent on fibronectin. Therefore, for the attachment of both cultured epithelial cells and fibroblasts to oxygen-containing surfaces in the presence of serum, there is a high requirement for serum vitronectin but a lesser requirement for fibronectin. The effects of the establishment of corneal epithelial cells in culture and the site of origin of the cells, were determined. Primary isolates of epithelial cells isolated from the limbal, central or peripheral regions of the cornea were less dependent on vitronectin for initial attachment to TCPS than were these cells after several passages in culture. Furthermore, the primary isolates were dramatically less responsive to vitronectin than the cultured cells. These results indicate that the mechanism of attachment of corneal epithelial cells to TCPS varies with the culture experience of the cells. Cells that are culture neophytes can employe endogenous mechanisms for the initial attachment to TCPS, whereas cells established in culture are dependent on exogenous vitronectin in order to attach.
              Bookmark

              Author and article information

              Journal
              SIA
              Surface and Interface Analysis
              Surf. Interface Anal.
              Wiley
              01422421
              10969918
              January 2009
              January 2009
              : 41
              : 1
              : 11-16
              Article
              10.1002/sia.2964
              de30c15a-c305-47bc-b188-da5e50c57c4d
              © 2009

              http://doi.wiley.com/10.1002/tdm_license_1.1

              History

              Comments

              Comment on this article