20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Machine Learning and Texture Analysis of [18F]FDG PET/CT Images for the Prediction of Distant Metastases in Non-Small-Cell Lung Cancer Patients

      , , , , ,
      Biomedicines
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of our study was to predict the occurrence of distant metastases in non-small-cell lung cancer (NSCLC) patients using machine learning methods and texture analysis of 18F-labeled 2-deoxy-d-glucose Positron Emission Tomography/Computed Tomography {[18F]FDG PET/CT} images. In this retrospective and single-center study, we evaluated 79 patients with advanced NSCLC who had undergone [18F]FDG PET/CT scan at diagnosis before any therapy. Patients were divided into two independent training (n = 44) and final testing (n = 35) cohorts. Texture features of primary tumors and lymph node metastases were extracted from [18F]FDG PET/CT images using the LIFEx program. Six machine learning methods were applied to the training dataset using the entire panel of features. Dedicated selection methods were used to generate different combinations of five features. The performance of selected machine learning methods applied to the different combinations of features was determined using accuracy, the confusion matrix, receiver operating characteristic (ROC) curves, and area under the curve (AUC). A total of 104 and 78 lesions were analyzed in the training and final testing cohorts, respectively. The support vector machine (SVM) and decision tree methods showed the highest accuracy in the training cohort. Seven combinations of five features were obtained and introduced in the models and subsequently applied to the training and final testing cohorts using the SVM and decision tree. The accuracy and the AUC of the decision tree method were higher than those obtained with the SVM in the final testing cohort. The best combination of features included shape sphericity, gray level run length matrix_run length non-uniformity (GLRLM_RLNU), Total Lesion Glycolysis (TLG), Metabolic Tumor Volume (MTV), and shape compacity. The combination of these features with the decision tree method could predict the occurrence of distant metastases with an accuracy of 74.4% and an AUC of 0.63 in NSCLC patients.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The biology and management of non-small cell lung cancer.

            Important advancements in the treatment of non-small cell lung cancer (NSCLC) have been achieved over the past two decades, increasing our understanding of the disease biology and mechanisms of tumour progression, and advancing early detection and multimodal care. The use of small molecule tyrosine kinase inhibitors and immunotherapy has led to unprecedented survival benefits in selected patients. However, the overall cure and survival rates for NSCLC remain low, particularly in metastatic disease. Therefore, continued research into new drugs and combination therapies is required to expand the clinical benefit to a broader patient population and to improve outcomes in NSCLC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Radiomics: the bridge between medical imaging and personalized medicine

              Radiomics, the high-throughput mining of quantitative image features from standard-of-care medical imaging that enables data to be extracted and applied within clinical-decision support systems to improve diagnostic, prognostic, and predictive accuracy, is gaining importance in cancer research. Radiomic analysis exploits sophisticated image analysis tools and the rapid development and validation of medical imaging data that uses image-based signatures for precision diagnosis and treatment, providing a powerful tool in modern medicine. Herein, we describe the process of radiomics, its pitfalls, challenges, opportunities, and its capacity to improve clinical decision making, emphasizing the utility for patients with cancer. Currently, the field of radiomics lacks standardized evaluation of both the scientific integrity and the clinical relevance of the numerous published radiomics investigations resulting from the rapid growth of this area. Rigorous evaluation criteria and reporting guidelines need to be established in order for radiomics to mature as a discipline. Herein, we provide guidance for investigations to meet this urgent need in the field of radiomics.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                BIOMID
                Biomedicines
                Biomedicines
                MDPI AG
                2227-9059
                March 2024
                February 20 2024
                : 12
                : 3
                : 472
                Article
                10.3390/biomedicines12030472
                38540086
                b7115925-9170-465d-b435-899e8d36910c
                © 2024

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content185

                Cited by4

                Most referenced authors761