21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Insight into Cellular Uptake and Transcytosis of Peptide Nanoparticles in Spodoptera frugiperda Cells and Isolated Midgut

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Silencing genes in insects by introducing double-stranded RNA (dsRNA) in the diet holds promise as a new pest management method. It has been demonstrated that nanoparticles (NPs) can potentiate dsRNA silencing effects by promoting cellular internalization and protecting dsRNA against early degradation. However, many mysteries of how NPs and dsRNA are internalized by gut epithelial cells and, subsequently, transported across the midgut epithelium remain to be unraveled. The sole purpose of the current study is to investigate the role of endocytosis and transcytosis in the transport of branched amphipathic peptide nanocapsules (BAPCs) associated with dsRNA through midgut epithelium cells. Spodoptera frugiperda midguts and the epithelial cell line Sf9, derived from S. frugiperda, were used to study transcytosis and endocytosis, respectively. Results suggest that clathrin-mediated endocytosis and macropinocytosis are largely responsible for cellular uptake, and once within the midgut, transcytosis is involved in shuttling BAPCs–dsRNA from the lumen to the hemolymph. In addition, BAPCs were not found to be toxic to Sf9 cells or generate damaging reactive species once internalized.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          DLS and zeta potential - What they are and what they are not?

          Adequate characterization of NPs (nanoparticles) is of paramount importance to develop well defined nanoformulations of therapeutic relevance. Determination of particle size and surface charge of NPs are indispensable for proper characterization of NPs. DLS (dynamic light scattering) and ZP (zeta potential) measurements have gained popularity as simple, easy and reproducible tools to ascertain particle size and surface charge. Unfortunately, on practical grounds plenty of challenges exist regarding these two techniques including inadequate understanding of the operating principles and dealing with critical issues like sample preparation and interpretation of the data. As both DLS and ZP have emerged from the realms of physical colloid chemistry - it is difficult for researchers engaged in nanomedicine research to master these two techniques. Additionally, there is little literature available in drug delivery research which offers a simple, concise account on these techniques. This review tries to address this issue while providing the fundamental principles of these techniques, summarizing the core mathematical principles and offering practical guidelines on tackling commonly encountered problems while running DLS and ZP measurements. Finally, the review tries to analyze the relevance of these two techniques from translatory perspective.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Mechanisms of clathrin-mediated endocytosis

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of Nanoparticle-Induced Oxidative Stress and Toxicity

              The rapidly emerging field of nanotechnology has offered innovative discoveries in the medical, industrial, and consumer sectors. The unique physicochemical and electrical properties of engineered nanoparticles (NP) make them highly desirable in a variety of applications. However, these novel properties of NP are fraught with concerns for environmental and occupational exposure. Changes in structural and physicochemical properties of NP can lead to changes in biological activities including ROS generation, one of the most frequently reported NP-associated toxicities. Oxidative stress induced by engineered NP is due to acellular factors such as particle surface, size, composition, and presence of metals, while cellular responses such as mitochondrial respiration, NP-cell interaction, and immune cell activation are responsible for ROS-mediated damage. NP-induced oxidative stress responses are torch bearers for further pathophysiological effects including genotoxicity, inflammation, and fibrosis as demonstrated by activation of associated cell signaling pathways. Since oxidative stress is a key determinant of NP-induced injury, it is necessary to characterize the ROS response resulting from NP. Through physicochemical characterization and understanding of the multiple signaling cascades activated by NP-induced ROS, a systemic toxicity screen with oxidative stress as a predictive model for NP-induced injury can be developed.
                Bookmark

                Author and article information

                Journal
                ACS Omega
                ACS Omega
                ao
                acsodf
                ACS Omega
                American Chemical Society
                2470-1343
                22 March 2022
                05 April 2022
                : 7
                : 13
                : 10933-10943
                Affiliations
                []Department of Biological Sciences, Auburn University , 101 Rouse Life Sciences, Auburn, Alabama 36849-5412, United States
                []Department of Entomology and Plant Pathology, Auburn University , Auburn, Alabama 36849-5412, United States
                Author notes
                [* ]Phone: +334-844-1659. Email: adriana.avila@ 123456auburn.edu .
                Author information
                https://orcid.org/0000-0002-5162-8004
                https://orcid.org/0000-0002-6429-6125
                https://orcid.org/0000-0001-6788-6975
                Article
                10.1021/acsomega.1c06638
                8991906
                35415340
                b22939fa-1b90-47ff-89e2-a555bd907e99
                © 2022 The Authors. Published by American Chemical Society

                Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works ( https://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 23 November 2021
                : 28 February 2022
                Funding
                Funded by: National Institute of Food and Agriculture, doi 10.13039/100005825;
                Award ID: NA
                Funded by: Alabama Agricultural Experiment Station, doi 10.13039/100008745;
                Award ID: NA
                Categories
                Article
                Custom metadata
                ao1c06638
                ao1c06638

                Comments

                Comment on this article

                scite_
                14
                2
                13
                0
                Smart Citations
                14
                2
                13
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content1,260

                Cited by5

                Most referenced authors717