91
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mice Lacking Expression of Secondary Lymphoid Organ Chemokine Have Defects in Lymphocyte Homing and Dendritic Cell Localization

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Secondary lymphoid organ chemokine (SLC) is expressed in high endothelial venules and in T cell zones of spleen and lymph nodes (LNs) and strongly attracts naive T cells. In mice homozygous for the paucity of lymph node T cell ( plt) mutation, naive T cells fail to home to LNs or the lymphoid regions of spleen. Here we demonstrate that expression of SLC is undetectable in plt mice. In addition to the defect in T cell homing, we demonstrate that dendritic cells (DCs) fail to accumulate in spleen and LN T cell zones of plt mice. DC migration to LNs after contact sensitization is also substantially reduced. The physiologic significance of these abnormalities in plt mice is indicated by a markedly increased sensitivity to infection with murine hepatitis virus. The plt mutation maps to the SLC locus; however, the sequence of SLC introns and exons in plt mice is normal. These findings suggest that the abnormalities in plt mice are due to a genetic defect in the expression of SLC and that SLC mediates the entry of naive T cells and antigen-stimulated DCs into the T cell zones of secondary lymphoid organs.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Selective Recruitment of Immature and Mature Dendritic Cells by Distinct Chemokines Expressed in Different Anatomic Sites

          DCs (dendritic cells) function as sentinels of the immune system. They traffic from the blood to the tissues where, while immature, they capture antigens. They then leave the tissues and move to the draining lymphoid organs where, converted into mature DC, they prime naive T cells. This suggestive link between DC traffic pattern and functions led us to investigate the chemokine responsiveness of DCs during their development and maturation. DCs were differentiated either from CD34+ hematopoietic progenitor cells (HPCs) cultured with granulocyte/macrophage colony–stimulating factor (GM-CSF) plus tumor necrosis factor (TNF)-α or from monocytes cultured with GM-CSF plus interleukin 4. Immature DCs derived from CD34+ HPCs migrate most vigorously in response to macrophage inflammatory protein (MIP)-3α, but also to MIP-1α and RANTES (regulated on activation, normal T cell expressed and secreted). Upon maturation, induced by either TNF-α, lipopolysaccharide, or CD40L, DCs lose their response to these three chemokines when they acquire a sustained responsiveness to a single other chemokine, MIP-3β. CC chemokine receptor (CCR)6 and CCR7 are the only known receptors for MIP-3α and MIP-3β, respectively. The observation that CCR6 mRNA expression decreases progressively as DCs mature, whereas CCR7 mRNA expression is sharply upregulated, provides a likely explanation for the changes in chemokine responsiveness. Similarly, MIP-3β responsiveness and CCR7 expression are induced upon maturation of monocyte- derived DCs. Furthermore, the chemotactic response to MIP-3β is also acquired by CD11c+ DCs isolated from blood after spontaneous maturation. Finally, detection by in situ hybridization of MIP-3α mRNA only within inflamed epithelial crypts of tonsils, and of MIP-3β mRNA specifically in T cell–rich areas, suggests a role for MIP-3α/CCR6 in recruitment of immature DCs at site of injury and for MIP-3β/CCR7 in accumulation of antigen-loaded mature DCs in T cell–rich areas.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lymphocyte homing and homeostasis.

            The integration and control of systemic immune responses depends on the regulated trafficking of lymphocytes. This lymphocyte "homing" process disperses the immunologic repertoire, directs lymphocyte subsets to the specialized microenvironments that control their differentiation and regulate their survival, and targets immune effector cells to sites of antigenic or microbial invasion. Recent advances reveal that the exquisite specificity of lymphocyte homing is determined by combinatorial "decision processes" involving multistep sequential engagement of adhesion and signaling receptors. These homing-related interactions are seamlessly integrated into the overall interaction of the lymphocyte with its environment and participate directly in the control of lymphocyte function, life-span, and population dynamics. In this article a review of the molecular basis of lymphocyte homing is presented, and mechanisms by which homing physiology regulated the homeostasis of immunologic resources are proposed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation

              Dendritic cells (DC) migrate into inflamed peripheral tissues where they capture antigens and, following maturation, to lymph nodes where they stimulate T cells. To gain insight into this process we compared chemokine receptor expression in immature and mature DC. Immature DC expressed CCR1, CCR2, CCR5 and CXCR1 and responded to their respective ligands, which are chemokines produced at inflammatory sites. Following stimulation with LPS or TNF-alpha maturing DC expressed high levels of CCR7 mRNA and acquired responsiveness to the CCR7 ligand EBI1 ligand chemokine (ELC), a chemokine produced in lymphoid organs. Maturation also resulted in up-regulation of CXCR4 and down-regulation of CXCR1 mRNA, while CCR1 and CCR5 mRNA were only marginally affected for up to 40 h. However, CCR1 and CCR5 were lost from the cell surface within 3 h, due to receptor down-regulation mediated by chemokines produced by maturing DC. A complete down-regulation of CCR1 and CCR5 mRNA was observed only after stimulation with CD40 ligand of DC induced to mature by LPS treatment. These different patterns of chemokine receptors are consistent with "inflammatory" and "primary response" phases of DC function.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                1 February 1999
                : 189
                : 3
                : 451-460
                Affiliations
                From the [* ]Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94143; the []Center for Experimental Medicine and [§ ]Laboratory Animal Research Center, Institute of Medical Science, University of  Tokyo, Tokyo 108-8639, Japan; and the []Department of Immunology, Toho University School of Medicine, Tokyo 143-8540, Japan
                Author notes

                Address correspondence to Michael Dee Gunn, Division of Cardiology, Duke University Medical Center, Box 3547, Durham, NC 27710. Phone: 919-681-5072; Fax: 919-684-8591; E-mail: michael.gunn@ 123456duke.edu

                Article
                10.1084/jem.189.3.451
                2192914
                9927507
                b223e4a0-a82d-43d4-ae78-7703fd82c21d
                Copyright @ 1999
                History
                : 17 September 1998
                : 24 November 1998
                Categories
                Articles

                Medicine
                cc chemokines,cellular immunity,leukocyte chemotaxis,t lymphocytes,mutation
                Medicine
                cc chemokines, cellular immunity, leukocyte chemotaxis, t lymphocytes, mutation

                Comments

                Comment on this article