5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Power attenuation from restricting range of motion is minimized in subjects with fast RTD and following isometric training

      1 , 1 , 2 , 1 , 3 , 1
      Journal of Applied Physiology
      American Physiological Society

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Power output was greater in the unrestricted than restricted ROM, and there were strong relationships between rate of torque development (RTD) and velocity development (RVD) with peak power. RTD and RVD had the strongest relationships with power when ROM was restricted and unrestricted, respectively. Following 8 wk of isometric training, discrepancies in power between restricted and unrestricted ROM were reduced. Increasing RTD through isometric training increased power in dynamic movements, especially when ROM was restricted.

          Abstract

          Time-dependent measures consisting of rate of torque development (RTD), rate of velocity development (RVD), and rate of neuromuscular activation can be used to evaluate explosive muscular performance, which becomes critical when performing movements throughout limited ranges of motion (ROM). In this study, we investigated how restricting ROM influences power production while also exploring the relationship with time-dependent measures before and after isometric resistance training. Using a HUMAC NORM dynamometer, seven males (27 ± 7 yr) and six females (22 ± 3 yr) underwent 8 wk of maximal isometric dorsiflexion training 3 days/wk. One leg was trained at 0° [short-muscle tendon unit (MTU) length] and the other at 40° of plantar flexion (long-MTU length). RTD and rate of neuromuscular activation were evaluated during “fast” maximal isometric contractions. Power, RVD, and rate of neuromuscular activation were assessed during maximal isotonic contractions in four conditions [small (40°–30° of plantar flexion) ROM at 10% and 50% MVC; large (40°–0° of plantar flexion) ROM at 10% and 50% MVC] for both legs, pre- and posttraining. Despite no change in rate of neuromuscular activation following training, peak power, RTD, and RVD increased at both MTU lengths ( P < 0.05). Strong relationships ( R 2 = 0.73) were observed between RTD and peak power in the small ROM, indicating that fast time-dependent measures are critical for optimal performance when ROM is constrained. Meanwhile, strong relationships ( R 2 = 0.90) between RVD and power were observed at the 50% load, indicating that RVD is critical when limited by load and ROM is not confined. Maximal isometric dorsiflexion training can be used to improve time-dependent measures (RTD, RVD) to minimize power attenuation when ROM is restricted.

          NEW & NOTEWORTHY Power output was greater in the unrestricted than restricted ROM, and there were strong relationships between rate of torque development (RTD) and velocity development (RVD) with peak power. RTD and RVD had the strongest relationships with power when ROM was restricted and unrestricted, respectively. Following 8 wk of isometric training, discrepancies in power between restricted and unrestricted ROM were reduced. Increasing RTD through isometric training increased power in dynamic movements, especially when ROM was restricted.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Rate of force development: physiological and methodological considerations

          The evaluation of rate of force development during rapid contractions has recently become quite popular for characterising explosive strength of athletes, elderly individuals and patients. The main aims of this narrative review are to describe the neuromuscular determinants of rate of force development and to discuss various methodological considerations inherent to its evaluation for research and clinical purposes. Rate of force development (1) seems to be mainly determined by the capacity to produce maximal voluntary activation in the early phase of an explosive contraction (first 50–75 ms), particularly as a result of increased motor unit discharge rate; (2) can be improved by both explosive-type and heavy-resistance strength training in different subject populations, mainly through an improvement in rapid muscle activation; (3) is quite difficult to evaluate in a valid and reliable way. Therefore, we provide evidence-based practical recommendations for rational quantification of rate of force development in both laboratory and clinical settings.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans.

            1. The adaptations of the ankle dorsiflexor muscles and the behaviour of single motor units in the tibialis anterior in response to 12 weeks of dynamic training were studied in five human subjects. In each training session ten series of ten fast dorsiflexions were performed 5 days a week, against a load of 30-40% of the maximal muscle strength. 2. Training led to an enhancement of maximal voluntary muscle contraction (MVC) and the speed of voluntary ballistic contraction. This last enhancement was mainly related to neural adaptations since the time course of the muscle twitch induced by electrical stimulation remained unaffected. 3. The motor unit torque, recorded by the spike-triggered averaging method, increased without any change in its time to peak. The orderly motor unit recruitment (size principle) was preserved during slow ramp contraction after training but the units were activated earlier and had a greater maximal firing frequency during voluntary ballistic contractions. In addition, the high frequency firing rate observed at the onset of the contractions was maintained during the subsequent spikes after training. 4. Dynamic training induced brief (2-5 ms) motor unit interspike intervals, or 'doublets'. These doublets appeared to be different from the closely spaced (+/-10 ms) discharges usually observed at the onset of the ballistic contractions. Motor units with different recruitment thresholds showed doublet discharges and the percentage of the sample of units firing doublets was increased by training from 5.2 to 32.7%. The presence of these discharges was observed not only at the onset of the series of spikes but also later in the electromyographic (EMG) burst. 5. It is likely that earlier motor unit activation, extra doublets and enhanced maximal firing rate contribute to the increase in the speed of voluntary muscle contraction after dynamic training.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Influence of maximal muscle strength and intrinsic muscle contractile properties on contractile rate of force development.

              'Explosive' muscle strength or contractile rate of force development (RFD) is a term to describe the ability to rapidly develop muscular force, and can be measured as the slope of the torque-time curve obtained during isometric conditions. Previously, conflicting results have been reported regarding the relationship between contractile RFD and various physiological parameters. One reason for this discrepancy may be that RFD in various time intervals from the onset of contraction is affected by different physiological parameters. The aim of the present study was to investigate the relationship between voluntary contractile RFD in time intervals of 0-10, 0-20, ..., 0-250 ms from the onset of contraction and two main parameters: (1) voluntary maximal muscle strength and (2) electrically evoked muscle twitch contractile properties. The main finding was that voluntary RFD became increasingly more dependent on MVC and less dependent on muscle twitch contractile properties as time from the onset of contraction increased. At time intervals later than 90 ms from the onset of contraction maximal muscle strength could account for 52-81% of the variance in voluntary RFD. In the very early time interval (<40 ms from the onset of contraction) voluntary RFD was moderately correlated to the twitch contractile properties of the muscle and was to a less extent related to MVC. The present results suggest that explosive movements with different time spans are influenced by different physiological parameters. This may have important practical implications when designing resistance training programs for specific sports.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Applied Physiology
                Journal of Applied Physiology
                American Physiological Society
                8750-7587
                1522-1601
                February 01 2022
                February 01 2022
                : 132
                : 2
                : 497-510
                Affiliations
                [1 ]Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
                [2 ]School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
                [3 ]College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
                Article
                10.1152/japplphysiol.00688.2021
                b0f4ab01-2ade-4737-8d29-2e8af75935c0
                © 2022
                History

                Comments

                Comment on this article