92
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rate of force development: physiological and methodological considerations

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The evaluation of rate of force development during rapid contractions has recently become quite popular for characterising explosive strength of athletes, elderly individuals and patients. The main aims of this narrative review are to describe the neuromuscular determinants of rate of force development and to discuss various methodological considerations inherent to its evaluation for research and clinical purposes. Rate of force development (1) seems to be mainly determined by the capacity to produce maximal voluntary activation in the early phase of an explosive contraction (first 50–75 ms), particularly as a result of increased motor unit discharge rate; (2) can be improved by both explosive-type and heavy-resistance strength training in different subject populations, mainly through an improvement in rapid muscle activation; (3) is quite difficult to evaluate in a valid and reliable way. Therefore, we provide evidence-based practical recommendations for rational quantification of rate of force development in both laboratory and clinical settings.

          Related collections

          Most cited references201

          • Record: found
          • Abstract: not found
          • Book: not found

          Biomechanics and Motor Control of Human Movement

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Increased rate of force development and neural drive of human skeletal muscle following resistance training.

            The maximal rate of rise in muscle force [rate of force development (RFD)] has important functional consequences as it determines the force that can be generated in the early phase of muscle contraction (0-200 ms). The present study examined the effect of resistance training on contractile RFD and efferent motor outflow ("neural drive") during maximal muscle contraction. Contractile RFD (slope of force-time curve), impulse (time-integrated force), electromyography (EMG) signal amplitude (mean average voltage), and rate of EMG rise (slope of EMG-time curve) were determined (1-kHz sampling rate) during maximal isometric muscle contraction (quadriceps femoris) in 15 male subjects before and after 14 wk of heavy-resistance strength training (38 sessions). Maximal isometric muscle strength [maximal voluntary contraction (MVC)] increased from 291.1 +/- 9.8 to 339.0 +/- 10.2 N. m after training. Contractile RFD determined within time intervals of 30, 50, 100, and 200 ms relative to onset of contraction increased from 1,601 +/- 117 to 2,020 +/- 119 (P < 0.05), 1,802 +/- 121 to 2,201 +/- 106 (P < 0.01), 1,543 +/- 83 to 1,806 +/- 69 (P < 0.01), and 1,141 +/- 45 to 1,363 +/- 44 N. m. s(-1) (P < 0.01), respectively. Corresponding increases were observed in contractile impulse (P < 0.01-0.05). When normalized relative to MVC, contractile RFD increased 15% after training (at zero to one-sixth MVC; P < 0.05). Furthermore, muscle EMG increased (P < 0.01-0.05) 22-143% (mean average voltage) and 41-106% (rate of EMG rise) in the early contraction phase (0-200 ms). In conclusion, increases in explosive muscle strength (contractile RFD and impulse) were observed after heavy-resistance strength training. These findings could be explained by an enhanced neural drive, as evidenced by marked increases in EMG signal amplitude and rate of EMG rise in the early phase of muscle contraction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases.

              The mechanisms of anterior cruciate ligament injury in basketball are not well defined. To describe the mechanisms of anterior cruciate ligament injury in basketball based on videos of injury situations. Case series; Level of evidence, 4. Six international experts performed visual inspection analyses of 39 videos (17 male and 22 female players) of anterior cruciate ligament injury situations from high school, college, and professional basketball games. Two predefined time points were analyzed: initial ground contact and 50 milliseconds later. The analysts were asked to assess the playing situation, player behavior, and joint kinematics. There was contact at the assumed time of injury in 11 of the 39 cases (5 male and 6 female players). Four of these cases were direct blows to the knee, all in men. Eleven of the 22 female cases were collisions, or the player was pushed by an opponent before the time of injury. The estimated time of injury, based on the group median, ranged from 17 to 50 milliseconds after initial ground contact. The mean knee flexion angle was higher in female than in male players, both at initial contact (15 degrees vs 9 degrees , P = .034) and at 50 milliseconds later (27 degrees vs 19 degrees , P = .042). Valgus knee collapse occurred more frequently in female players than in male players (relative risk, 5.3; P = .002). Female players landed with significantly more knee and hip flexion and had a 5.3 times higher relative risk of sustaining a valgus collapse than did male players. Movement patterns were frequently perturbed by opponents. Preventive programs to enhance knee control should focus on avoiding valgus motion and include distractions resembling those seen in match situations.
                Bookmark

                Author and article information

                Contributors
                nicola.maffiuletti@kws.ch
                Journal
                Eur J Appl Physiol
                Eur. J. Appl. Physiol
                European Journal of Applied Physiology
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                1439-6319
                1439-6327
                3 March 2016
                3 March 2016
                2016
                : 116
                : 1091-1116
                Affiliations
                [ ]Human Performance Lab, Schulthess Clinic, Lengghalde 6, 8008 Zurich, Switzerland
                [ ]Department of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense, Denmark
                [ ]Centre for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
                [ ]School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
                [ ]Department of Life Sciences, University of Roehampton, London, UK
                [ ]Laboratory of Applied Biology, ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
                Author notes

                Communicated by Nigel A. S. Taylor.

                Article
                3346
                10.1007/s00421-016-3346-6
                4875063
                26941023
                825adc2a-f47d-4749-8272-3fbc0f8e7d04
                © The Author(s) 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 23 November 2015
                : 17 February 2016
                Categories
                Invited Review
                Custom metadata
                © Springer-Verlag Berlin Heidelberg 2016

                Anatomy & Physiology
                explosive strength,ballistic contraction,motor unit discharge rate,musculotendinous stiffness,strength training,dynamometry

                Comments

                Comment on this article