1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dairy Foods, Obesity, and Metabolic Health: The Role of the Food Matrix Compared with Single Nutrients

      research-article
      Advances in Nutrition
      Oxford University Press
      dietary guidelines, dairy, calories, vitamins, weight loss, probiotics, microbiome

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          In the 20th century, scientific and geopolitical events led to the concept of food as a delivery system for calories and specific isolated nutrients. As a result, conventional dietary guidelines have focused on individual nutrients to maintain health and prevent disease. For dairy foods, this has led to general dietary recommendations to consume 2–3 daily servings of reduced-fat dairy foods, without regard to type (e.g., yogurt, cheese, milk), largely based on theorized benefits of isolated nutrients for bone health (e.g., calcium, vitamin D) and theorized harms of isolated nutrients for cardiovascular diseases (CVDs) and obesity (e.g., total fat, saturated fat, total calories). However, advances in nutrition science have demonstrated that foods represent complex matrices of nutrients, minerals, bioactives, food structures, and other factors (e.g., phoshopholipids, prebiotics, probiotics) with correspondingly complex effects on health and disease. The present evidence suggests that whole-fat dairy foods do not cause weight gain, that overall dairy consumption increases lean body mass and reduces body fat, that yogurt consumption and probiotics reduce weight gain, that fermented dairy consumption including cheese is linked to lower CVD risk, and that yogurt, cheese, and even dairy fat may protect against type 2 diabetes. Based on the current science, dairy consumption is part of a healthy diet, without strong evidence to favor reduced-fat products; while intakes of probiotic-containing unsweetened and fermented dairy products such as yogurt and cheese appear especially beneficial.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          An obesity-associated gut microbiome with increased capacity for energy harvest.

          The worldwide obesity epidemic is stimulating efforts to identify host and environmental factors that affect energy balance. Comparisons of the distal gut microbiota of genetically obese mice and their lean littermates, as well as those of obese and lean human volunteers have revealed that obesity is associated with changes in the relative abundance of the two dominant bacterial divisions, the Bacteroidetes and the Firmicutes. Here we demonstrate through metagenomic and biochemical analyses that these changes affect the metabolic potential of the mouse gut microbiota. Our results indicate that the obese microbiome has an increased capacity to harvest energy from the diet. Furthermore, this trait is transmissible: colonization of germ-free mice with an 'obese microbiota' results in a significantly greater increase in total body fat than colonization with a 'lean microbiota'. These results identify the gut microbiota as an additional contributing factor to the pathophysiology of obesity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diet-microbiota interactions as moderators of human metabolism.

            It is widely accepted that obesity and associated metabolic diseases, including type 2 diabetes, are intimately linked to diet. However, the gut microbiota has also become a focus for research at the intersection of diet and metabolic health. Mechanisms that link the gut microbiota with obesity are coming to light through a powerful combination of translation-focused animal models and studies in humans. A body of knowledge is accumulating that points to the gut microbiota as a mediator of dietary impact on the host metabolic status. Efforts are focusing on the establishment of causal relationships in people and the prospect of therapeutic interventions such as personalized nutrition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity: A Comprehensive Review.

              Suboptimal nutrition is a leading cause of poor health. Nutrition and policy science have advanced rapidly, creating confusion yet also providing powerful opportunities to reduce the adverse health and economic impacts of poor diets. This review considers the history, new evidence, controversies, and corresponding lessons for modern dietary and policy priorities for cardiovascular diseases, obesity, and diabetes mellitus. Major identified themes include the importance of evaluating the full diversity of diet-related risk pathways, not only blood lipids or obesity; focusing on foods and overall diet patterns, rather than single isolated nutrients; recognizing the complex influences of different foods on long-term weight regulation, rather than simply counting calories; and characterizing and implementing evidence-based strategies, including policy approaches, for lifestyle change. Evidence-informed dietary priorities include increased fruits, nonstarchy vegetables, nuts, legumes, fish, vegetable oils, yogurt, and minimally processed whole grains; and fewer red meats, processed (eg, sodium-preserved) meats, and foods rich in refined grains, starch, added sugars, salt, and trans fat. More investigation is needed on the cardiometabolic effects of phenolics, dairy fat, probiotics, fermentation, coffee, tea, cocoa, eggs, specific vegetable and tropical oils, vitamin D, individual fatty acids, and diet-microbiome interactions. Little evidence to date supports the cardiometabolic relevance of other popular priorities: eg, local, organic, grass-fed, farmed/wild, or non-genetically modified. Evidence-based personalized nutrition appears to depend more on nongenetic characteristics (eg, physical activity, abdominal adiposity, gender, socioeconomic status, culture) than genetic factors. Food choices must be strongly supported by clinical behavior change efforts, health systems reforms, novel technologies, and robust policy strategies targeting economic incentives, schools and workplaces, neighborhood environments, and the food system. Scientific advances provide crucial new insights on optimal targets and best practices to reduce the burdens of diet-related cardiometabolic diseases.
                Bookmark

                Author and article information

                Journal
                Adv Nutr
                Adv Nutr
                advances
                Advances in Nutrition
                Oxford University Press
                2161-8313
                2156-5376
                September 2019
                13 September 2019
                13 September 2019
                : 10
                : 5
                : 917S-923S
                Affiliations
                [1] Friedman School of Nutrition Science and Policy, Tufts University , Boston, MA, USA
                Author notes
                Address correspondence to DM (e-mail: dariush.mozaffarian@ 123456tufts.edu ).
                Author information
                http://orcid.org/0000-0001-7958-9492
                Article
                nmz053
                10.1093/advances/nmz053
                6743828
                31518410
                b07ef9f0-251b-4adb-923a-a30758e19fdc
                Copyright © American Society for Nutrition 2019.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com

                History
                : 07 December 2018
                : 26 February 2019
                : 02 May 2019
                Page count
                Pages: 7
                Categories
                Supplement

                dietary guidelines,dairy,calories,vitamins,weight loss,probiotics,microbiome

                Comments

                Comment on this article