0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effect of the biological functionalization of nanoparticles on magnetic CLEA preparation.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lipase immobilization using adsorption on magnetic nanoparticles, cross-linked enzyme aggregates (CLEA), and a combination of both techniques was investigated. Experimental designs were used for the optimization of the immobilization observing that the pH and ionic strength play a principal role during the lipase immobilization and its activity. For adsorption on magnetic nanoparticles and CLEA synthesis the optimal condition was pH and 100 mM. Besides, during the CLEA synthesis, glutaraldehyde concentration showed to be a significant effect on the enzyme activity. A comparison between a magnetic CLEA prepared with (Lip@mCLEA) and without (mCLEA) biological functionalized magnetic nanoparticles was made observing that the use of functionalized support showed the best performance activity. All biocatalytic systems developed gives to the enzyme thermal stability between 45 and 70 °C, being Lip@mCLEA the more stable biocatalyst. Similar behavior was observed at different pH, where both Lip@mCLEA and mCLEA showed stability at a range of pH 5 to 8. The immobilized biocatalysts showed the same affinity of the subtract that the free enzyme suggested that the enzyme structure not modified the active site. The combination of both types of immobilization show evidenced the importance of the biological functionalization of the support when magnetic CLEA is produced.

          Related collections

          Author and article information

          Journal
          Int J Biol Macromol
          International journal of biological macromolecules
          Elsevier BV
          1879-0003
          0141-8130
          Nov 30 2021
          : 191
          Affiliations
          [1 ] Planta Piloto de Procesos Industriales Microbiológicos- (PROIMI-CONICET), Av. Belgrano y Pasaje Caseros, T4001 MVB, Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 471, T4001 MVB, Tucumán, Argentina.
          [2 ] Planta Piloto de Procesos Industriales Microbiológicos- (PROIMI-CONICET), Av. Belgrano y Pasaje Caseros, T4001 MVB, Tucumán, Argentina.
          [3 ] Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 471, T4001 MVB, Tucumán, Argentina.
          [4 ] Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 471, T4001 MVB, Tucumán, Argentina. Electronic address: maria.navarro@fbqf.unt.edu.ar.
          [5 ] Planta Piloto de Procesos Industriales Microbiológicos- (PROIMI-CONICET), Av. Belgrano y Pasaje Caseros, T4001 MVB, Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 471, T4001 MVB, Tucumán, Argentina. Electronic address: c.romero@conicet.gov.ar.
          Article
          S0141-8130(21)02012-2
          10.1016/j.ijbiomac.2021.09.091
          34547314
          af81e7ac-5f86-4b5e-85b6-8850dc3fd08d
          History

          Immobilization,Biological functionalized nanoparticles,CLEA,Lip@mCLEA,Lipase,Magnetic-CLEA

          Comments

          Comment on this article