14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Leaf Senescence: Systems and Dynamics Aspects

      1 , 2 , 1 , 1 , 2
      Annual Review of Plant Biology
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Leaf senescence is an important developmental process involving orderly disassembly of macromolecules for relocating nutrients from leaves to other organs and is critical for plants’ fitness. Leaf senescence is the response of an intricate integration of various environmental signals and leaf age information and involves a complex and highly regulated process with the coordinated actions of multiple pathways. Impressive progress has been made in understanding how senescence signals are perceived and processed, how the orderly degeneration process is regulated, how the senescence program interacts with environmental signals, and how senescence regulatory genes contribute to plant productivity and fitness. Employment of systems approaches using omics-based technologies and characterization of key regulators have been fruitful in providing newly emerging regulatory mechanisms. This review mainly discusses recent advances in systems understanding of leaf senescence from a molecular network dynamics perspective. Genetic strategies for improving the productivity and quality of crops are also described.

          Related collections

          Most cited references117

          • Record: found
          • Abstract: found
          • Article: not found

          JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling.

          Jasmonate and related signalling compounds have a crucial role in both host immunity and development in plants, but the molecular details of the signalling mechanism are poorly understood. Here we identify members of the jasmonate ZIM-domain (JAZ) protein family as key regulators of jasmonate signalling. JAZ1 protein acts to repress transcription of jasmonate-responsive genes. Jasmonate treatment causes JAZ1 degradation and this degradation is dependent on activities of the SCF(COI1) ubiquitin ligase and the 26S proteasome. Furthermore, the jasmonoyl-isoleucine (JA-Ile) conjugate, but not other jasmonate-derivatives such as jasmonate, 12-oxo-phytodienoic acid, or methyl-jasmonate, promotes physical interaction between COI1 and JAZ1 proteins in the absence of other plant proteins. Our results suggest a model in which jasmonate ligands promote the binding of the SCF(COI1) ubiquitin ligase to and subsequent degradation of the JAZ1 repressor protein, and implicate the SCF(COI1)-JAZ1 protein complex as a site of perception of the plant hormone JA-Ile.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Leaf senescence.

            Leaf senescence constitutes the final stage of leaf development and is critical for plants' fitness as nutrient relocation from leaves to reproducing seeds is achieved through this process. Leaf senescence involves a coordinated action at the cellular, tissue, organ, and organism levels under the control of a highly regulated genetic program. Major breakthroughs in the molecular understanding of leaf senescence were achieved through characterization of various senescence mutants and senescence-associated genes, which revealed the nature of regulatory factors and a highly complex molecular regulatory network underlying leaf senescence. The genetically identified regulatory factors include transcription regulators, receptors and signaling components for hormones and stress responses, and regulators of metabolism. Key issues still need to be elucidated, including cellular-level analysis of senescence-associated cell death, the mechanism of coordination among cellular-, organ-, and organism-level senescence, the integration mechanism of various senescence-affecting signals, and the nature and control of leaf age.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Abscisic Acid and Abiotic Stress Tolerance in Crop Plants

              Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression.
                Bookmark

                Author and article information

                Journal
                Annual Review of Plant Biology
                Annu. Rev. Plant Biol.
                Annual Reviews
                1543-5008
                1545-2123
                April 29 2019
                April 29 2019
                : 70
                : 1
                : 347-376
                Affiliations
                [1 ]Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea;,
                [2 ]Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu 42988, Republic of Korea
                Article
                10.1146/annurev-arplant-050718-095859
                30811218
                a69ee9a3-ad57-49f9-8395-a10d3a30df4e
                © 2019
                History

                Comments

                Comment on this article