37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic and Physio-Biochemical Characterization of a Novel Premature Senescence Leaf Mutant in Rice ( Oryza sativa L.)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Premature senescence greatly affects the yield production and the grain quality in plants, although the molecular mechanisms are largely unknown. Here, we identified a novel rice premature senescence leaf 85 ( psl85) mutant from ethyl methane sulfonate (EMS) mutagenesis of cultivar Zhongjian100 (the wild-type, WT). The psl85 mutant presented a distinct dwarfism and premature senescence leaf phenotype, starting from the seedling stage to the mature stage, with decreasing level of chlorophyll and degradation of chloroplast, declined photosynthetic capacity, increased content of malonaldehyde (MDA), upregulated expression of senescence-associated genes, and disrupted reactive oxygen species (ROS) scavenging system. Moreover, endogenous abscisic acid (ABA) level was significantly increased in psl85 at the late aging phase, and the detached leaves of psl85 showed more rapid chlorophyll deterioration than that of WT under ABA treatment, indicating that PSL85 was involved in ABA-induced leaf senescence. Genetic analysis revealed that the premature senescence leaf phenotype was controlled by a single recessive nuclear gene which was finally mapped in a 47 kb region on the short arm of chromosome 7, covering eight candidate open reading frames (ORFs). No similar genes controlling a premature senescence leaf phenotype have been identified in the region, and cloning and functional analysis of the gene is currently underway.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Abscisic acid biosynthesis and catabolism.

          The level of abscisic acid (ABA) in any particular tissue in a plant is determined by the rate of biosynthesis and catabolism of the hormone. Therefore, identifying all the genes involved in the metabolism is essential for a complete understanding of how this hormone directs plant growth and development. To date, almost all the biosynthetic genes have been identified through the isolation of auxotrophic mutants. On the other hand, among several ABA catabolic pathways, current genomic approaches revealed that Arabidopsis CYP707A genes encode ABA 8'-hydroxylases, which catalyze the first committed step in the predominant ABA catabolic pathway. Identification of ABA metabolic genes has revealed that multiple metabolic steps are differentially regulated to fine-tune the ABA level at both transcriptional and post-transcriptional levels. Furthermore, recent ongoing studies have given new insights into the regulation and site of ABA metabolism in relation to its physiological roles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Leaf senescence.

            Leaf senescence constitutes the final stage of leaf development and is critical for plants' fitness as nutrient relocation from leaves to reproducing seeds is achieved through this process. Leaf senescence involves a coordinated action at the cellular, tissue, organ, and organism levels under the control of a highly regulated genetic program. Major breakthroughs in the molecular understanding of leaf senescence were achieved through characterization of various senescence mutants and senescence-associated genes, which revealed the nature of regulatory factors and a highly complex molecular regulatory network underlying leaf senescence. The genetically identified regulatory factors include transcription regulators, receptors and signaling components for hormones and stress responses, and regulators of metabolism. Key issues still need to be elucidated, including cellular-level analysis of senescence-associated cell death, the mechanism of coordination among cellular-, organ-, and organism-level senescence, the integration mechanism of various senescence-affecting signals, and the nature and control of leaf age.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Arabidopsis cytochrome P450 CYP707A encodes ABA 8'-hydroxylases: key enzymes in ABA catabolism.

              The hormonal action of abscisic acid (ABA) in plants is controlled by the precise balance between its biosynthesis and catabolism. In plants, ABA 8'-hydroxylation is thought to play a predominant role in ABA catabolism. ABA 8'-hydroxylase was shown to be a cytochrome P450 (P450); however, its corresponding gene had not been identified. Through phylogenetic and DNA microarray analyses during seed imbibition, the candidate genes for this enzyme were narrowed down from 272 Arabidopsis P450 genes. These candidate genes were functionally expressed in yeast to reveal that members of the CYP707A family, CYP707A1-CYP707A4, encode ABA 8'-hydroxylases. Expression analyses revealed that CYP707A2 is responsible for the rapid decrease in ABA level during seed imbibition. During drought stress conditions, all CYP707A genes were upregulated, and upon rehydration a significant increase in mRNA level was observed. Consistent with the expression analyses, cyp707a2 mutants exhibited hyperdormancy in seeds and accumulated six-fold greater ABA content than wild type. These results demonstrate that CYP707A family genes play a major regulatory role in controlling the level of ABA in plants.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                09 August 2018
                August 2018
                : 19
                : 8
                : 2339
                Affiliations
                State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; chinayanyan@ 123456163.com (Y.H.); 13650950747@ 123456163.com (Z.Z.); 15958018630@ 123456163.com (L.L.); sqtang@ 123456126.com (S.T.)
                Author notes
                [* ]Correspondence: wujianli@ 123456caas.cn ; Tel.: +86-571-633-70326
                Author information
                https://orcid.org/0000-0003-3480-1503
                Article
                ijms-19-02339
                10.3390/ijms19082339
                6122088
                30096885
                a24d5c85-4c0e-40cd-8136-e76e6e6327f1
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 18 July 2018
                : 06 August 2018
                Categories
                Article

                Molecular biology
                rice,premature senescence,chlorophyll,abscisic acid,senescence-associated gene
                Molecular biology
                rice, premature senescence, chlorophyll, abscisic acid, senescence-associated gene

                Comments

                Comment on this article