Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      New Isolates of Sweet potato feathery mottle virus and Sweet potato virus C: Biological and Molecular Properties, and Recombination Analysis Based on Complete Genomes.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sweet potato feathery mottle virus (SPFMV) and Sweet potato virus C (SPVC) isolates were obtained from sweetpotato shoot or tuberous root samples from three widely separated locations in Australia's tropical north (Cairns, Darwin, and Kununurra). The samples were planted in the glasshouse and scions obtained from the plants were graft inoculated to Ipomoea setosa plants. Virus symptoms were recorded in the field in Kununurra and in glasshouse-grown sweetpotato and I. setosa plants. RNA extracts from I. setosa leaf samples were subjected to high-throughput sequencing. New complete SPFMV (n = 17) and SPVC (n = 6) genomic sequences were obtained and compared with 47 sequences from GenBank. Phylogenetic analysis revealed that the 17 new SPFMV genomes all fitted within either major phylogroup A, minor phylogroup II, formerly O; or major phylogroup B, formerly RC. Major phylogroup A's minor phylogroup I, formerly EA, only appeared when recombinants were included. Numbers of SPVC genomes were insufficient to subdivide it into phylogroups. Within phylogroup A's minor phylogroup II, the closest genetic match between an Australian and a Southeast Asian SPFMV sequence was the 97.4% nucleotide identity with an East Timorese sequence. Recombination analysis of the 43 SPFMV and 27 SPVC sequences revealed evidence of 44 recombination events, 16 of which involved interspecies sequence transfers between SPFMV and SPVC and 28 intraspecies transfers, 17 in SPFMV and 11 in SPVC. Within SPFMV, 11 intraspecies recombination events were between different major phylogroups and 6 were between members of the same major phylogroup. Phylogenetic analysis accounting for the detected recombination events within SPFMV sequences yielded evidence of minor phylogroup II and phylogroup B but the five sequences from minor phylogroup I were distributed in two separate groups among the sequences of minor phylogroup II. For the SPVC sequences, phylogenetic analysis accounting for the detected recombination events revealed three major phylogroups (A, B, and C), with major phylogroup A being further subdivided into two minor phylogroups. Within the recombinant genomes of both viruses, their PI, NIa-Pro, NIb, and CP genes contained the highest numbers of recombination breakpoints. The high frequency of interspecies and interphylogroup recombination events reflects the widespread occurrence of mixed SPVC and SPFMV infections within sweetpotato plants. The prevalence of infection in northern Australian sweetpotato samples reinforces the need for improved virus testing in healthy sweetpotato stock programs. Furthermore, evidence of genetic connectivity between Australian and East Timorese SPFMV genomes emphasizes the need for improved biosecurity measures to protect against potentially damaging international virus movements.

          Related collections

          Author and article information

          Journal
          Plant Dis
          Plant disease
          Scientific Societies
          1943-7692
          0191-2917
          Oct 2018
          : 102
          : 10
          Affiliations
          [1 ] School of Agriculture and Environment and the University of Western Australia (UWA) Institute of Agriculture, Faculty of Science, UWA, Crawley, WA 6009, Australia; and Cooperative Research Centre for Plant Biosecurity, Canberra, ACT 2617, Australia.
          [2 ] School of Agriculture and Environment and UWA Institute of Agriculture, Faculty of Science, UWA.
          [3 ] Institute of Infectious Diseases and Molecular Medicine, Computational Biology Group, University of Cape Town, Cape Town 7549, South Africa.
          [4 ] CSIRO Land and Water, Floreat Park, WA 6014, Australia; and Cooperative Research Centre for Plant Biosecurity, Canberra, ACT 2617, Australia.
          [5 ] Department of Primary Industries and Rural Development, South Perth, WA 6151, Australia; UWA Institute of Agriculture, Faculty of Science, UWA.
          Article
          10.1094/PDIS-12-17-1972-RE
          30136885
          a1094d9b-3e61-4569-9967-35a9e9442097
          History

          Comments

          Comment on this article