1
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A New Tailored Approach to Calculate the Optimal Number of Outdoor Air Changes in School Building HVAC Systems in the Post-COVID-19 Era

      , , ,
      Energies
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Air conditioning systems can play a positive or negative role in the spread of COVID-19 infection. The importance of sufficient outdoor air changes in buildings was highlighted by the World Health Organization, therefore these should be guaranteed by mechanical ventilation systems or adequate air conditioning systems. The proposed case study concerns the optimal number of outdoor air changes to limit COVID-19 contagion for a school building in Central Italy. The Wells–Riley model is used to assess the risk of airborne infection, while energy consumption is calculated by a dynamic energy simulation software. The scope of the paper offers an innovative method to define the optimal ventilation strategy for the building’s HVAC system design to reduce the risk of infection with limited increases in energy consumption and greenhouse gas emissions. Results show that the desirable approach is the one in which the same low value of contagion risk is set in all rooms. This new approach results in significant energy savings, compared to the most common ones (setting the same high outdoor air rates for all rooms) to counteract the risk of infection. Finally, the zero-emission building target is verified by introducing a suitable photovoltaic system to offset pollutant emissions.

          Related collections

          Most cited references102

          • Record: found
          • Abstract: found
          • Article: not found

          Estimation of airborne viral emission: quanta emission rate of SARS-CoV-2 for infection risk assessment

          Highlights • Airborne transmission is a pathway of contagion of an epidemic. • Simulating the virus airborne transmission requires viral emission data. • A novel approach estimating the quanta emission rate of SARS-CoV-2 infected subject. • The approach estimates the quanta emission rate from the viral load in sputum. • Vocalization during light activity can lead to quanta emission rate >100 quanta h-1.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evidence of Airborne Transmission of the Severe Acute Respiratory Syndrome Virus

            There is uncertainty about the mode of transmission of the severe acute respiratory syndrome (SARS) virus. We analyzed the temporal and spatial distributions of cases in a large community outbreak of SARS in Hong Kong and examined the correlation of these data with the three-dimensional spread of a virus-laden aerosol plume that was modeled using studies of airflow dynamics. We determined the distribution of the initial 187 cases of SARS in the Amoy Gardens housing complex in 2003 according to the date of onset and location of residence. We then studied the association between the location (building, floor, and direction the apartment unit faced) and the probability of infection using logistic regression. The spread of the airborne, virus-laden aerosols generated by the index patient was modeled with the use of airflow-dynamics studies, including studies performed with the use of computational fluid-dynamics and multizone modeling. The curves of the epidemic suggested a common source of the outbreak. All but 5 patients lived in seven buildings (A to G), and the index patient and more than half the other patients with SARS (99 patients) lived in building E. Residents of the floors at the middle and upper levels in building E were at a significantly higher risk than residents on lower floors; this finding is consistent with a rising plume of contaminated warm air in the air shaft generated from a middle-level apartment unit. The risks for the different units matched the virus concentrations predicted with the use of multizone modeling. The distribution of risk in buildings B, C, and D corresponded well with the three-dimensional spread of virus-laden aerosols predicted with the use of computational fluid-dynamics modeling. Airborne spread of the virus appears to explain this large community outbreak of SARS, and future efforts at prevention and control must take into consideration the potential for airborne spread of this virus. Copyright 2004 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Airborne spread of measles in a suburban elementary school.

              A measles epidemic in a modern suburban elementary school in upstate New York in spring, 1974, is analyzed in terms of a model which provides a basis for apportioning the chance of infection from classmates sharing the same home room, from airborne organisms recirculated by the ventilating system, and from exposure in school buses. The epidemic was notable because of its explosive nature and its occurrence in a school where 97% of the children had been vaccinated. Many had been vaccinated at less than one year of age. The index case was a girl in second grade who produced 28 secondary cases in 14 different classrooms. Organisms recirculated by the ventilating system were strongly implicated. After two subsequent generations, 60 children had been infected, and the epidemic subsided. From estimates of major physical and biologic factors, it was possible to calculate that the index case produced approximately 93 units of airborne infection (quanta) per minute. The epidemic pattern suggested that the secondaries were less infectious by an order of magnitude. The exceptional infectiousness of the index case, inadequate immunization of many of the children, and the high percentage of air recirculated throughout the school, are believed to account for the extent and sharpness of the outbreak.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ENERGA
                Energies
                Energies
                MDPI AG
                1996-1073
                June 2024
                June 05 2024
                : 17
                : 11
                : 2769
                Article
                10.3390/en17112769
                03b39bdb-cb08-42e4-8363-48868eddd61d
                © 2024

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article