30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diet-Induced Alterations in Total and Metabolically Active Microbes within the Rumen of Dairy Cows

      research-article
      , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          DNA-based techniques are widely used to study microbial populations; however, this approach is not specific to active microbes, because DNA may originate from inactive and/or dead cells. Using cDNA and DNA, respectively, we aimed to discriminate the active microbes from the total microbial community within the rumen of dairy cows fed diets with increasing proportions of corn silage (CS). Nine multiparous lactating Holstein cows fitted with ruminal cannulas were used in a replicated 3×3 Latin square (32-d period; 21-d adaptation) design to investigate diet-induced shifts in microbial populations by targeting the rDNA gene. Cows were fed a total mixed ration with the forage portion being either barley silage (0% CS), a 50∶50 mixture of barley silage and corn silage (50% CS), or corn silage (100% CS). No differences were found for total microbes analyzed by quantitative PCR, but changes were observed within the active ones. Feeding more CS to dairy cows was accompanied by an increase in Prevotella rRNA transcripts ( P = 0.10) and a decrease in the protozoal rRNA transcripts ( P<0.05). Although they were distributed differently among diets, 78% of the amplicons detected in DNA- and cDNA-based fingerprints were common to total and active bacterial communities. These may represent a bacterial core of abundant and active cells that drive the fermentation processes. In contrast, 10% of amplicons were specific to total bacteria and may represent inactive or dead cells, whereas 12% were only found within the active bacterial community and may constitute slow-growing bacteria with high metabolic activity. It appears that cDNA-based analysis is more discriminative to identify diet-induced shifts within the microbial community. This approach allows the detection of diet-induced changes in the microbial populations as well as particular bacterial amplicons that remained undetected using DNA-based methods.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Phylogenetic structure of the prokaryotic domain: the primary kingdoms.

          C Woese, G. Fox (1977)
          A phylogenetic analysis based upon ribosomal RNA sequence characterization reveals that living systems represent one of three aboriginal lines of descent: (i) the eubacteria, comprising all typical bacteria; (ii) the archaebacteria, containing methanogenic bacteria; and (iii) the urkaryotes, now represented in the cytoplasmic component of eukaryotic cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Methane mitigation in ruminants: from microbe to the farm scale.

            Decreasing enteric methane (CH4) emissions from ruminants without altering animal production is desirable both as a strategy to reduce global greenhouse gas (GHG) emissions and as a means of improving feed conversion efficiency. The aim of this paper is to provide an update on a selection of proved and potential strategies to mitigate enteric CH4 production by ruminants. Various biotechnologies are currently being explored with mixed results. Approaches to control methanogens through vaccination or the use of bacteriocins highlight the difficulty to modulate the rumen microbial ecosystem durably. The use of probiotics, i.e. acetogens and live yeasts, remains a potentially interesting approach, but results have been either unsatisfactory, not conclusive, or have yet to be confirmed in vivo. Elimination of the rumen protozoa to mitigate methanogenesis is promising, but this option should be carefully evaluated in terms of livestock performances. In addition, on-farm defaunation techniques are not available up to now. Several feed additives such as ionophores, organic acids and plant extracts have also been assayed. The potential use of plant extracts to reduce CH4 is receiving a renewed interest as they are seen as a natural alternative to chemical additives and are well perceived by consumers. The response to tannin- and saponin-containing plant extracts is highly variable and more research is needed to assess the effectiveness and eventual presence of undesirable residues in animal products. Nutritional strategies to mitigate CH4 emissions from ruminants are, without doubt, the most developed and ready to be applied in the field. Approaches presented in this paper involve interventions on the nature and amount of energy-based concentrates and forages, which constitute the main component of diets as well as the use of lipid supplements. The possible selection of animals based on low CH4 production and more likely on their high efficiency of digestive processes is also addressed. Whatever the approach proposed, however, before practical solutions are applied in the field, the sustainability of CH4 suppressing strategies is an important issue that has to be considered. The evaluation of different strategies, in terms of total GHG emissions for a given production system, is discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane.

              Methyl coenzyme-M reductase A (mcrA) clone libraries were generated from microbial DNA extracted from the rumen of cattle fed a roughage diet with and without supplementation of the antimethanogenic compound bromochloromethane. Bromochloromethane reduced total methane emissions by c. 30%, with a resultant increase in propionate and branched chain fatty acids. The mcrA clone libraries revealed that Methanobrevibacter spp. were the dominant species identified. A decrease in the incidence of Methanobrevibacter spp. from the clone library generated from bromochloromethane treatment was observed. In addition, a more diverse methanogenic population with representatives from Methanococcales, Methanomicrobiales and Methanosacinales orders was observed for the bromochloromethane library. Sequence data generated from these libraries aided in the design of an mcrA-targeted quantitative PCR (qPCR) assay. The reduction in methane production by bromochloromethane was associated with an average decrease of 34% in the number of methanogenic Archaea when monitored with this qPCR assay. Dissociation curve analysis of mcrA amplicons showed a clear difference in melting temperatures for Methanobrevibacter spp. (80-82 degrees C) and all other methanongens (84-86 degrees C). A decrease in the intensity of the Methanobrevibacter spp. specific peak and an increase for the other peak in the bromochloromethane-treated animals corresponded with the changes within the clone libraries.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                10 April 2013
                : 8
                : 4
                : e60978
                Affiliations
                [1]Agriculture and Agri-Food Canada, Dairy and Swine Research and Development Centre, Sherbrooke, Quebec, Canada
                U. S. Salinity Lab, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: CB AL. Performed the experiments: AL. Analyzed the data: AL. Wrote the paper: AL CB.

                Article
                PONE-D-12-39049
                10.1371/journal.pone.0060978
                3622600
                23593365
                a0434bf8-0d12-4510-a5fd-80bf8183e92c
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 26 November 2012
                : 5 March 2013
                Page count
                Pages: 7
                Funding
                This study was funded by a grant (Dairy Research Cluster) from Agriculture and Agri-Food Canada (Ottawa, ON), Dairy Farmers of Canada (Ottawa, ON) and Canadian Dairy Commission (Ottawa, ON). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Agriculture
                Agricultural Biotechnology
                Animal Management
                Animal Nutrition
                Animal Performance
                Animal Production
                Biology
                Biochemistry
                Biotechnology
                Ecology
                Microbiology
                Applied Microbiology
                Archaeans
                Bacteriology
                Host-Pathogen Interaction
                Industrial Microbiology
                Microbial Ecology
                Microbial Metabolism
                Microbial Physiology
                Plant Microbiology
                Protozoology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article