21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Circulating Tumor Cells (CTC) Are Associated with Defects in Adaptive Immunity in Patients with Inflammatory Breast Cancer

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Circulating tumor cells (CTCs) play a crucial role in tumor dissemination and are prognostic in primary and metastatic breast cancer. Peripheral blood (PB) immune cells contribute to an unfavorable microenvironment for CTC survival. This study aimed to correlate CTCs with the PB T-cell immunophenotypes and functions of patients with inflammatory breast cancer (IBC).

          Methods: This study included 65 IBC patients treated at the MD Anderson Cancer Center. PB was obtained from patients prior to starting a new line of chemotherapy for CTCs enumeration by CellSearch ®, and T cell phenotype and function by flow cytometry; the results were correlated with CTCs and clinical outcome.

          Results: At least 1 CTC (≥1) or ≥5 CTCs was detected in 61.5% or 32.3% of patients, respectively. CTC count did not correlate with total lymphocytes; however, patients with ≥1 CTC or ≥5 CTCs had lower percentages (%) of CD3+ and CD4+ T cells compared with patients with no CTCs or <5 CTCs, respectively. Patients with ≥1 CTC had a lower percentage of T-cell receptor (TCR)-activated CD8+ T cells synthesizing TNF-α and IFN-γ and a higher percentage of T-regulatory lymphocytes compared to patients without CTCs. In multivariate analysis, tumor grade and % CD3+ T-cells were associated with ≥1 CTC, whereas ≥5 CTC was associated with tumor grade, stage, % CD3+ and % CD4+ T cells, and % TCR-activated CD8 T-cells synthesizing IL-17.

          Conclusions: IBC patients with CTCs in PB had abnormalities in adaptive immunity that could potentially impact tumor cell dissemination and initiation of the metastatic cascade.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases.

          The purpose of this study was to determine the accuracy, precision, and linearity of the CellSearch system and evaluate the number of circulating tumor cells (CTCs) per 7.5 mL of blood in healthy subjects, patients with nonmalignant diseases, and patients with a variety of metastatic carcinomas. The CellSearch system was used to enumerate CTCs in 7.5 mL of blood. Blood samples spiked with cells from tumor cell lines were used to establish analytical accuracy, reproducibility, and linearity. Prevalence of CTCs was determined in blood from 199 patients with nonmalignant diseases, 964 patients with metastatic carcinomas, and 145 healthy donors. Enumeration of spiked tumor cells was linear over the range of 5 to 1,142 cells, with an average recovery of >/=85% at each spike level. Only 1 of the 344 (0.3%) healthy and nonmalignant disease subjects had >/=2 CTCs per 7.5 mL of blood. In 2,183 blood samples from 964 metastatic carcinoma patients, CTCs ranged from 0 to 23,618 CTCs per 7.5 mL (mean, 60 +/- 693 CTCs per 7.5 mL), and 36% (781 of 2,183) of the specimens had >/=2 CTCs. Detection of >/=2 CTCs occurred at the following rates: 57% (107 of 188) of prostate cancers, 37% (489 of 1,316) of breast cancers, 37% (20 of 53) of ovarian cancers, 30% (99 of 333) of colorectal cancers, 20% (34 of 168) of lung cancers, and 26% (32 of 125) of other cancers. The CellSearch system can be standardized across multiple laboratories and may be used to determine the clinical utility of CTCs. CTCs are extremely rare in healthy subjects and patients with nonmalignant diseases but present in various metastatic carcinomas with a wide range of frequencies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma.

            Regulatory T cells (T(reg)) that prevent autoimmune diseases by suppression of self-reactive T cells may also suppress the immune response against cancer. In mice, depletion of T(reg) by Ab therapy leads to more efficient tumor rejection. T(reg)-mediated suppression of antitumor immune responses may partly explain the poor clinical response to vaccine-based immunotherapy for human cancer. In this study, we measured the prevalence of T(reg) that coexpress CD4 and CD25 in the PBLs, tumor-infiltrating lymphocytes, and regional lymph node lymphocytes from 65 patients with either pancreas or breast cancer. In breast cancer patients (n = 35), pancreas cancer patients (n = 30), and normal donors (n = 35), the prevalence of T(reg) were 16.6% (SE 1.22), 13.2% (SE 1.13), and 8.6% (SE 0.71) of the total CD4(+) cells, respectively. The prevalence of T(reg) were significantly higher in breast cancer patients (p < 0.01) and pancreas cancer patients (p < 0.01) when compared with normal donors. In tumor-infiltrating lymphocytes and lymph node lymphocytes, the T(reg) prevalence were 20.2% (SE 3.93) and 20.1% (SE 4.3), respectively. T(reg) constitutively coexpressed CTLA-4 and CD45RO markers, and secreted TGF-beta and IL-10 but did not secrete IFN-gamma. When cocultured with activated CD8(+) cells or CD4(+)25(-) cells, T(reg) potently suppressed their proliferation and secretion of IFN-gamma. We conclude that the prevalence of T(reg) is increased in the peripheral blood as well as in the tumor microenvironment of patients with invasive breast or pancreas cancers. These T(reg) may mitigate the immune response against cancer, and may partly explain the poor immune response against tumor Ags.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Trends in inflammatory breast carcinoma incidence and survival: the surveillance, epidemiology, and end results program at the National Cancer Institute.

              Inflammatory breast carcinoma (IBC) appears to be a clinicopathologic entity distinct from noninflammatory locally advanced breast cancer (LABC). We examined incidence and survival trends for IBC in Surveillance, Epidemiology, and End Results (SEER) Program data with a case definition designed to capture many of its unique clinical and pathologic characteristics. We analyzed breast cancer cases diagnosed in the SEER 9 Registries (n = 180,224), between 1988 and 2000. Breast cancer cases were categorized using SEER's "Extent of Disease" codes in combination with International Classification of Diseases for Oncology morphology code 8530/3 and classified as IBC (n = 3648), LABC (n = 3636), and non-T4 breast cancer (n = 172,940). We compared changes in incidence rates over 3-year intervals by breast cancer subtype and race using SEER*Stat. Survival differences by breast cancer subtype and race were assessed using Kaplan-Meier curves and log-rank statistics. All statistical tests were two-sided. Between 1988 and 1990 and 1997 and 1999, IBC incidence rates (per 100,000 woman-years) increased from 2.0 to 2.5 (P 10 years, P < .0001). Black women with IBC or LABC had poorer survival than white women with IBC or LABC, respectively (log-rank test, P < .001). Throughout the 1990s, IBC incidence rose, and survival improved modestly. Substantial racial differences were noted in age at diagnosis, age-specific incidence rates, and survival outcomes.
                Bookmark

                Author and article information

                Journal
                J Cancer
                J Cancer
                jca
                Journal of Cancer
                Ivyspring International Publisher (Sydney )
                1837-9664
                2016
                3 June 2016
                : 7
                : 9
                : 1095-1104
                Affiliations
                1. Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA;
                2. Department of Breast Medical Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA;
                3. Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA;
                4. Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA;
                5. Currently at 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia;
                6. Currently at Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) - IRCCS, Meldola (FC), Italy;
                7. Currently at Department of Clinical Medicine and Surgery, University Federico II, Naples. Italy;
                8. Currently at Cancer Treatment Centers of America, Newnan, GA, USA;
                9. Currently at Thomas Jefferson University-Kimmel Cancer Center, Philadelphia, PA, USA.
                Author notes
                ✉ Corresponding author: Dr. J. M. Reuben, Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA. Tel: +1-713-745-6837; Fax: +1-713-794-1838; E-mail: jreuben@ 123456mdanderson.org .

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                jcav07p1095
                10.7150/jca.13098
                4911877
                27326253
                9e3f3374-76d9-471f-988c-41ae2bead88a
                © Ivyspring International Publisher. Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. See http://ivyspring.com/terms for terms and conditions.
                History
                : 30 June 2015
                : 7 September 2015
                Categories
                Research Paper

                Oncology & Radiotherapy
                circulating tumors cells,adaptive immunity,and inflammatory breast cancer

                Comments

                Comment on this article