5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Furan-based inhibitors of pyruvate dehydrogenase: SAR study, biochemical evaluation and computational analysis

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many neutral derivatives of the furan analogue of thiamine were tested to explore the SAR of the two thiamine pyrophosphate (TPP)-binding pockets and the substrate-binding C2-pocket: the optimum inhibitor bound 77-fold more tightly than TPP.

          Abstract

          Suppression of pyruvate dehydrogenase complex (PDHc) is a mechanism for cancer cells to manifest the Warburg effect. However, recent evidence suggests that whether PDHc activity is suppressed or activated depends on the type of cancer. The PDHc E1 subunit (PDH E1) is a thiamine pyrophosphate (TPP)-dependent enzyme, catalysing the first and rate-limiting step of PDHc; thus, there is a need for selective PDH E1 inhibitors. There is, however, inadequate understanding of the structure–activity relationship (SAR) and a lack of inhibitors specific for mammalian PDH E1. Our group have reported TPP analogues as TPP-competitive inhibitors to study the family of TPP-dependent enzymes. Most of these TPP analogues cannot be used to study PDHc in cells because (a) they inhibit all members of the family and (b) they are membrane-impermeable. Here we report derivatives of thiamine/TPP analogues that identify elements distinctive to PDH E1 for selectivity. Based on our SAR findings, we developed a series of furan-based thiamine analogues as potent, selective and membrane-permeable inhibitors of mammalian PDH E1. We envision that our SAR findings and inhibitors will aid work on using chemical inhibition to understand the oncogenic role of PDHc.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          The Warburg Effect: How Does it Benefit Cancer Cells?

          Cancer cells rewire their metabolism to promote growth, survival, proliferation, and long-term maintenance. The common feature of this altered metabolism is the increased glucose uptake and fermentation of glucose to lactate. This phenomenon is observed even in the presence of completely functioning mitochondria and, together, is known as the 'Warburg Effect'. The Warburg Effect has been documented for over 90 years and extensively studied over the past 10 years, with thousands of papers reporting to have established either its causes or its functions. Despite this intense interest, the function of the Warburg Effect remains unclear. Here, we analyze several proposed explanations for the function of Warburg Effect, emphasize their rationale, and discuss their controversies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lead- and drug-like compounds: the rule-of-five revolution.

            Citations in CAS SciFinder to the rule-of-five (RO5) publication will exceed 1000 by year-end 2004. Trends in the RO5 literature explosion that can be discerned are the further definitions of drug-like. This topic is explored in terms of drug-like physicochemical features, drug-like structural features, a comparison of drug-like and non-drug-like in drug discovery and a discussion of how drug-like features relate to clinical success. Physicochemical features of CNS drugs and features related to CNS blood-brain transporter affinity are briefly reviewed. Recent literature on features of non-oral drugs is reviewed and how features of lead-like compounds differ from those of drug-like compounds is discussed. Most recently, partly driven by NIH roadmap initiatives, considerations have arisen as to what tool-like means in the search for chemical tools to probe biology space. All these topics frame the scope of this short review/perspective.: © 2004 Elsevier Ltd . All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metabolic Heterogeneity in Human Lung Tumors.

              Non-small cell lung cancer (NSCLC) is heterogeneous in the genetic and environmental parameters that influence cell metabolism in culture. Here, we assessed the impact of these factors on human NSCLC metabolism in vivo using intraoperative (13)C-glucose infusions in nine NSCLC patients to compare metabolism between tumors and benign lung. While enhanced glycolysis and glucose oxidation were common among these tumors, we observed evidence for oxidation of multiple nutrients in each of them, including lactate as a potential carbon source. Moreover, metabolically heterogeneous regions were identified within and between tumors, and surprisingly, our data suggested potential contributions of non-glucose nutrients in well-perfused tumor areas. Our findings not only demonstrate the heterogeneity in tumor metabolism in vivo but also highlight the strong influence of the microenvironment on this feature.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                OBCRAK
                Organic & Biomolecular Chemistry
                Org. Biomol. Chem.
                Royal Society of Chemistry (RSC)
                1477-0520
                1477-0539
                February 22 2023
                2023
                : 21
                : 8
                : 1755-1763
                Affiliations
                [1 ]Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
                [2 ]Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
                Article
                10.1039/D2OB02272A
                36723268
                9bf764dd-5295-416c-bc28-e54b32e0f654
                © 2023

                http://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content529

                Cited by3

                Most referenced authors402