5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bacteriophage Enumeration and Detection Methods

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Application of phages as alternative antimicrobials to combat pathogenic bacteria and their association to a healthy gut microbiome has prompted a need for precise methods for detection and enumeration of phage particles. There are many applicable methods, but care should be taken considering the measured object (infectious phage, whole phage particle or nucleic acid and proteins) and the concept behind the technique to avoid misinterpretations. While molecular methods cannot discriminate between viable and non-infectious phages, the traditional techniques for counting infectious phages can be time consuming and poorly reproducible. Here, we describe the methods currently used for phage detection and enumeration and highlight their advantages as well as their limitations. Finally, we provide insight on how to deal with complex samples, as well as future prospects in the field of phage quantification.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Marine viruses--major players in the global ecosystem.

          Viruses are by far the most abundant 'lifeforms' in the oceans and are the reservoir of most of the genetic diversity in the sea. The estimated 10(30) viruses in the ocean, if stretched end to end, would span farther than the nearest 60 galaxies. Every second, approximately 10(23) viral infections occur in the ocean. These infections are a major source of mortality, and cause disease in a range of organisms, from shrimp to whales. As a result, viruses influence the composition of marine communities and are a major force behind biogeochemical cycles. Each infection has the potential to introduce new genetic information into an organism or progeny virus, thereby driving the evolution of both host and viral assemblages. Probing this vast reservoir of genetic and biological diversity continues to yield exciting discoveries.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Central Nervous System and the Gut Microbiome.

            Neurodevelopment is a complex process governed by both intrinsic and extrinsic signals. While historically studied by researching the brain, inputs from the periphery impact many neurological conditions. Indeed, emerging data suggest communication between the gut and the brain in anxiety, depression, cognition, and autism spectrum disorder (ASD). The development of a healthy, functional brain depends on key pre- and post-natal events that integrate environmental cues, such as molecular signals from the gut. These cues largely originate from the microbiome, the consortium of symbiotic bacteria that reside within all animals. Research over the past few years reveals that the gut microbiome plays a role in basic neurogenerative processes such as the formation of the blood-brain barrier, myelination, neurogenesis, and microglia maturation and also modulates many aspects of animal behavior. Herein, we discuss the biological intersection of neurodevelopment and the microbiome and explore the hypothesis that gut bacteria are integral contributors to development and function of the nervous system and to the balance between mental health and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Real-time PCR in virology.

              The use of the polymerase chain reaction (PCR) in molecular diagnostics has increased to the point where it is now accepted as the gold standard for detecting nucleic acids from a number of origins and it has become an essential tool in the research laboratory. Real-time PCR has engendered wider acceptance of the PCR due to its improved rapidity, sensitivity, reproducibility and the reduced risk of carry-over contamination. There are currently five main chemistries used for the detection of PCR product during real-time PCR. These are the DNA binding fluorophores, the 5' endonuclease, adjacent linear and hairpin oligoprobes and the self-fluorescing amplicons, which are described in detail. We also discuss factors that have restricted the development of multiplex real-time PCR as well as the role of real-time PCR in quantitating nucleic acids. Both amplification hardware and the fluorogenic detection chemistries have evolved rapidly as the understanding of real-time PCR has developed and this review aims to update the scientist on the current state of the art. We describe the background, advantages and limitations of real-time PCR and we review the literature as it applies to virus detection in the routine and research laboratory in order to focus on one of the many areas in which the application of real-time PCR has provided significant methodological benefits and improved patient outcomes. However, the technology discussed has been applied to other areas of microbiology as well as studies of gene expression and genetic disease.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                23 October 2020
                2020
                : 11
                : 594868
                Affiliations
                Department of Veterinary and Animal Sciences, University of Copenhagen , Copenhagen, Denmark
                Author notes

                Edited by: Ramy Karam Aziz, Cairo University, Egypt

                Reviewed by: Ann-Charlott Salabarria, San Diego State University, United States; Konstantin Anatolievich Miroshnikov, Institute of Bioorganic Chemistry (RAS), Russia

                *Correspondence: Lone Brøndsted, lobr@ 123456sund.ku.dk

                This article was submitted to Virology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2020.594868
                7644846
                33193274
                98fdd971-77bf-4d62-85c0-5bde1a6f0d30
                Copyright © 2020 Ács, Gambino and Brøndsted.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 August 2020
                : 05 October 2020
                Page count
                Figures: 0, Tables: 1, Equations: 0, References: 48, Pages: 7, Words: 0
                Funding
                Funded by: Horizon 2020 10.13039/501100007601
                Categories
                Microbiology
                Mini Review

                Microbiology & Virology
                bacteriophage,enumeration,detection,molecular biology,real-time pcr,sequencing,double agar overlay assay

                Comments

                Comment on this article