Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
150
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structured illumination of the interface between centriole and peri-centriolar material

      research-article
      ,
      Open Biology
      The Royal Society
      super resolution microscopy, centriole, pericentriolar material, Drosophila

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The increase in centrosome size in mitosis was described over a century ago, and yet it is poorly understood how centrioles, which lie at the core of centrosomes, organize the pericentriolar material (PCM) in this process. Now, structured illumination microscopy reveals in Drosophila that, before clouds of PCM appear, its proteins are closely associated with interphase centrioles in two tube-like layers: an inner layer occupied by centriolar microtubules, Sas-4, Spd-2 and Polo kinase; and an outer layer comprising Pericentrin-like protein (Dplp), Asterless (Asl) and Plk4 kinase. Centrosomin (Cnn) and γ-tubulin associate with this outer tube in G2 cells and, upon mitotic entry, Polo activity is required to recruit them together with Spd-2 into PCM clouds. Cnn is required for Spd-2 to expand into the PCM during this maturation process but can itself contribute to PCM independently of Spd-2. By contrast, the centrioles of spermatocytes elongate from a pre-existing proximal unit during the G2 preceding meiosis. Sas-4 is restricted to the microtubule-associated, inner cylinder and Dplp and Cnn to the outer cylinder of this proximal part. γ-Tubulin and Asl associate with the outer cylinder and Spd-2 with the inner cylinder throughout the entire G2 centriole. Although they occupy different spatial compartments on the G2 centriole, Cnn, Spd-2 and γ-tubulin become diminished at the centriole upon entry into meiosis to become part of PCM clouds.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Centrioles, centrosomes, and cilia in health and disease.

          Centrioles are barrel-shaped structures that are essential for the formation of centrosomes, cilia, and flagella. Here we review recent advances in our understanding of the function and biogenesis of these organelles, and we emphasize their connection to human disease. Deregulation of centrosome numbers has long been proposed to contribute to genome instability and tumor formation, whereas mutations in centrosomal proteins have recently been genetically linked to microcephaly and dwarfism. Finally, structural or functional centriole aberrations contribute to ciliopathies, a variety of complex diseases that stem from the absence or dysfunction of cilia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SAK/PLK4 is required for centriole duplication and flagella development.

            SAK/PLK4 is a distinct member of the polo-like kinase family. SAK-/- mice die during embryogenesis, whereas SAK+/- mice develop liver and lung tumors and SAK+/- MEFs show mitotic abnormalities. However, the mechanism underlying these phenotypes is still not known. Here, we show that downregulation of SAK in Drosophila cells, by mutation or RNAi, leads to loss of centrioles, the core structures of centrosomes. Such cells are able to undergo repeated rounds of cell division, but display broad disorganized mitotic spindle poles. We also show that SAK mutants lose their centrioles during the mitotic divisions preceding male meiosis but still produce cysts of 16 primary spermatocytes as in the wild-type. Mathematical modeling of the stereotyped cell divisions of spermatogenesis can account for such loss by defective centriole duplication. The majority of spermatids in SAK mutants lack centrioles and so are unable to make sperm axonemes. Finally, we show that depletion of SAK in human cells also prevents centriole duplication and gives rise to mitotic abnormalities. SAK/PLK4 is necessary for centriole duplication both in Drosophila and human cells. Drosophila cells tolerate the lack of centrioles and undertake mitosis but cannot form basal bodies and hence flagella. Human cells depleted of SAK show error-prone mitosis, likely to underlie its tumor-suppressor role.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plk4-induced centriole biogenesis in human cells.

              We show that overexpression of Polo-like kinase 4 (Plk4) in human cells induces centrosome amplification through the simultaneous generation of multiple procentrioles adjoining each parental centriole. This provided an opportunity for dissecting centriole assembly and characterizing assembly intermediates. Critical components were identified and ordered into an assembly pathway through siRNA and localized through immunoelectron microscopy. Plk4, hSas-6, CPAP, Cep135, gamma-tubulin, and CP110 were required at different stages of procentriole formation and in association with different centriolar structures. Remarkably, hSas-6 associated only transiently with nascent procentrioles, whereas Cep135 and CPAP formed a core structure within the proximal lumen of both parental and nascent centrioles. Finally, CP110 was recruited early and then associated with the growing distal tips, indicating that centrioles elongate through insertion of alpha-/beta-tubulin underneath a CP110 cap. Collectively, these data afford a comprehensive view of the assembly pathway underlying centriole biogenesis in human cells.
                Bookmark

                Author and article information

                Journal
                Open Biol
                Open Biol
                RSOB
                royopenbio
                Open Biology
                The Royal Society
                2046-2441
                August 2012
                August 2012
                : 2
                : 8
                : 120104
                Affiliations
                Cancer Research UK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge , Cambridge CB2 3EH, UK
                Author notes
                Article
                rsob120104
                10.1098/rsob.120104
                3438536
                22977736
                95383677-cbb6-4d2c-b3ab-f3f20b4556ef

                © 2012 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original author and source are credited.

                History
                : 19 June 2012
                : 2 August 2012
                Categories
                1001
                33
                197
                Research
                Research Article
                Custom metadata
                August 2012

                Life sciences
                super resolution microscopy,drosophila,centriole,pericentriolar material
                Life sciences
                super resolution microscopy, drosophila, centriole, pericentriolar material

                Comments

                Comment on this article