16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Renal Clearable Ultrasmall Single-Crystal Fe Nanoparticles for Highly Selective and Effective Ferroptosis Therapy and Immunotherapy.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Iron-based nanoparticles have attracted much attention because of their ability to induce ferroptosis via a catalyzing Fenton reaction and to further potentiate immunotherapy. However, current iron-based nanoparticles need to be used in cooperation with other treatments or be applied in a high dose for effective therapy because of their low reactive oxygen species production efficacy. Here, we synthesized ultrasmall single-crystal Fe nanoparticles (bcc-USINPs) that stayed stable in a normal physiological environment but were highly active in a tumor microenvironment because of the selective acidic etching of an Fe3O4 shell and the exposure of the Fe(0) core. The bcc-USINPs could efficiently induce tumor cell ferroptosis and immunogenetic cell death at a very low concentration. Intravenous injection of iRGD-bcc-USINPs at three doses of 1 mg/kg could effectively suppress the tumor growth, promote the maturation of dendritic cells, and trigger the adaptive T cell response. Combined with programmed death-ligand 1 (PD-L1) immune checkpoint blockade immunotherapy, the iRGD-bcc-USINP-mediated ferroptosis therapy greatly potentiated the immune response and developed strong immune memory. In addition, these USINPs were quickly renal excreted with no side effects in normal tissues. These iRGD-bcc-USINPs provide a simple, safe, effective, and selectively tumor-responsive Fe(0) delivery system for ferroptosis-based immunotherapy.

          Related collections

          Author and article information

          Journal
          J Am Chem Soc
          Journal of the American Chemical Society
          American Chemical Society (ACS)
          1520-5126
          0002-7863
          Sep 29 2021
          : 143
          : 38
          Affiliations
          [1 ] State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
          [2 ] Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Building 76, Cambridge, Massachusetts 02142, United States.
          Article
          10.1021/jacs.1c07471
          34473493
          952edf23-dcb3-498b-93e1-c34fb2ce7883
          History

          Comments

          Comment on this article