8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A novel constrained genetic algorithm-based Boolean network inference method from steady-state gene expression data

      research-article
      1 , 2
      Bioinformatics
      Oxford University Press

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Motivation

          It is a challenging problem in systems biology to infer both the network structure and dynamics of a gene regulatory network from steady-state gene expression data. Some methods based on Boolean or differential equation models have been proposed but they were not efficient in inference of large-scale networks. Therefore, it is necessary to develop a method to infer the network structure and dynamics accurately on large-scale networks using steady-state expression.

          Results

          In this study, we propose a novel constrained genetic algorithm-based Boolean network inference (CGA-BNI) method where a Boolean canalyzing update rule scheme was employed to capture coarse-grained dynamics. Given steady-state gene expression data as an input, CGA-BNI identifies a set of path consistency-based constraints by comparing the gene expression level between the wild-type and the mutant experiments. It then searches Boolean networks which satisfy the constraints and induce attractors most similar to steady-state expressions. We devised a heuristic mutation operation for faster convergence and implemented a parallel evaluation routine for execution time reduction. Through extensive simulations on the artificial and the real gene expression datasets, CGA-BNI showed better performance than four other existing methods in terms of both structural and dynamics prediction accuracies. Taken together, CGA-BNI is a promising tool to predict both the structure and the dynamics of a gene regulatory network when a highest accuracy is needed at the cost of sacrificing the execution time.

          Availability and implementation

          Source code and data are freely available at https://github.com/csclab/CGA-BNI.

          Supplementary information

          Supplementary data are available at Bioinformatics online.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Emergence of Scaling in Random Networks

          Systems as diverse as genetic networks or the World Wide Web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a scale-free power-law distribution. This feature was found to be a consequence of two generic mechanisms: (i) networks expand continuously by the addition of new vertices, and (ii) new vertices attach preferentially to sites that are already well connected. A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional discovery via a compendium of expression profiles.

            Ascertaining the impact of uncharacterized perturbations on the cell is a fundamental problem in biology. Here, we describe how a single assay can be used to monitor hundreds of different cellular functions simultaneously. We constructed a reference database or "compendium" of expression profiles corresponding to 300 diverse mutations and chemical treatments in S. cerevisiae, and we show that the cellular pathways affected can be determined by pattern matching, even among very subtle profiles. The utility of this approach is validated by examining profiles caused by deletions of uncharacterized genes: we identify and experimentally confirm that eight uncharacterized open reading frames encode proteins required for sterol metabolism, cell wall function, mitochondrial respiration, or protein synthesis. We also show that the compendium can be used to characterize pharmacological perturbations by identifying a novel target of the commonly used drug dyclonine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Inferring Regulatory Networks from Expression Data Using Tree-Based Methods

              One of the pressing open problems of computational systems biology is the elucidation of the topology of genetic regulatory networks (GRNs) using high throughput genomic data, in particular microarray gene expression data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) challenge aims to evaluate the success of GRN inference algorithms on benchmarks of simulated data. In this article, we present GENIE3, a new algorithm for the inference of GRNs that was best performer in the DREAM4 In Silico Multifactorial challenge. GENIE3 decomposes the prediction of a regulatory network between p genes into p different regression problems. In each of the regression problems, the expression pattern of one of the genes (target gene) is predicted from the expression patterns of all the other genes (input genes), using tree-based ensemble methods Random Forests or Extra-Trees. The importance of an input gene in the prediction of the target gene expression pattern is taken as an indication of a putative regulatory link. Putative regulatory links are then aggregated over all genes to provide a ranking of interactions from which the whole network is reconstructed. In addition to performing well on the DREAM4 In Silico Multifactorial challenge simulated data, we show that GENIE3 compares favorably with existing algorithms to decipher the genetic regulatory network of Escherichia coli. It doesn't make any assumption about the nature of gene regulation, can deal with combinatorial and non-linear interactions, produces directed GRNs, and is fast and scalable. In conclusion, we propose a new algorithm for GRN inference that performs well on both synthetic and real gene expression data. The algorithm, based on feature selection with tree-based ensemble methods, is simple and generic, making it adaptable to other types of genomic data and interactions.
                Bookmark

                Author and article information

                Journal
                Bioinformatics
                Bioinformatics
                bioinformatics
                Bioinformatics
                Oxford University Press
                1367-4803
                1367-4811
                July 2021
                12 July 2021
                12 July 2021
                : 37
                : Suppl 1 , ISMB/ECCB 2021 Proceedings
                : i383-i391
                Affiliations
                [1 ] Faculty of Information Technology, Ton Duc Thang University , Ho Chi Minh 758307, Vietnam
                [2 ] Department of IT Convergence, University of Ulsan , Ulsan 680-749, Korea
                Author notes
                To whom correspondence should be addressed. E-mail: kwonyk@ 123456ulsan.ac.kr
                Article
                btab295
                10.1093/bioinformatics/btab295
                8275338
                34252959
                9014ec9d-c99a-4b37-b8a5-a283587b18a9
                © The Author(s) 2021. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 April 2021
                Page count
                Pages: 9
                Funding
                Funded by: 2021 Research Fund of University of Ulsan;
                Categories
                Systems Biology and Networks
                AcademicSubjects/SCI01060

                Bioinformatics & Computational biology
                Bioinformatics & Computational biology

                Comments

                Comment on this article