0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      OneSC: A computational platform for recapitulating cell state transitions

      Preprint
      research-article
      1 , 1 , 2 , 3
      bioRxiv
      Cold Spring Harbor Laboratory

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Computational modelling of cell state transitions has been a great interest of many in the field of developmental biology, cancer biology and cell fate engineering because it enables performing perturbation experiments in silico more rapidly and cheaply than could be achieved in a wet lab. Recent advancements in single-cell RNA sequencing (scRNA-seq) allow the capture of high-resolution snapshots of cell states as they transition along temporal trajectories. Using these high-throughput datasets, we can train computational models to generate in silico ‘synthetic’ cells that faithfully mimic the temporal trajectories. Here we present OneSC, a platform that can simulate synthetic cells across developmental trajectories using systems of stochastic differential equations govern by a core transcription factors (TFs) regulatory network. Different from the current network inference methods, OneSC prioritizes on generating Boolean network that produces faithful cell state transitions and steady cell states that mimic real biological systems. Applying OneSC to real data, we inferred a core TF network using a mouse myeloid progenitor scRNA-seq dataset and showed that the dynamical simulations of that network generate synthetic single-cell expression profiles that faithfully recapitulate the four myeloid differentiation trajectories going into differentiated cell states (erythrocytes, megakaryocytes, granulocytes and monocytes). Finally, through the in-silico perturbations of the mouse myeloid progenitor core network, we showed that OneSC can accurately predict cell fate decision biases of TF perturbations that closely match with previous experimental observations.

          Related collections

          Most cited references96

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          SCANPY : large-scale single-cell gene expression data analysis

          Scanpy is a scalable toolkit for analyzing single-cell gene expression data. It includes methods for preprocessing, visualization, clustering, pseudotime and trajectory inference, differential expression testing, and simulation of gene regulatory networks. Its Python-based implementation efficiently deals with data sets of more than one million cells (https://github.com/theislab/Scanpy). Along with Scanpy, we present AnnData, a generic class for handling annotated data matrices (https://github.com/theislab/anndata).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position.

            We describe an assay for transposase-accessible chromatin using sequencing (ATAC-seq), based on direct in vitro transposition of sequencing adaptors into native chromatin, as a rapid and sensitive method for integrative epigenomic analysis. ATAC-seq captures open chromatin sites using a simple two-step protocol with 500-50,000 cells and reveals the interplay between genomic locations of open chromatin, DNA-binding proteins, individual nucleosomes and chromatin compaction at nucleotide resolution. We discovered classes of DNA-binding factors that strictly avoided, could tolerate or tended to overlap with nucleosomes. Using ATAC-seq maps of human CD4(+) T cells from a proband obtained on consecutive days, we demonstrated the feasibility of analyzing an individual's epigenome on a timescale compatible with clinical decision-making.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Current best practices in single‐cell RNA‐seq analysis: a tutorial

              Abstract Single‐cell RNA‐seq has enabled gene expression to be studied at an unprecedented resolution. The promise of this technology is attracting a growing user base for single‐cell analysis methods. As more analysis tools are becoming available, it is becoming increasingly difficult to navigate this landscape and produce an up‐to‐date workflow to analyse one's data. Here, we detail the steps of a typical single‐cell RNA‐seq analysis, including pre‐processing (quality control, normalization, data correction, feature selection, and dimensionality reduction) and cell‐ and gene‐level downstream analysis. We formulate current best‐practice recommendations for these steps based on independent comparison studies. We have integrated these best‐practice recommendations into a workflow, which we apply to a public dataset to further illustrate how these steps work in practice. Our documented case study can be found at https://www.github.com/theislab/single-cell-tutorial. This review will serve as a workflow tutorial for new entrants into the field, and help established users update their analysis pipelines.
                Bookmark

                Author and article information

                Journal
                bioRxiv
                BIORXIV
                bioRxiv
                Cold Spring Harbor Laboratory
                03 June 2024
                : 2024.05.31.596831
                Affiliations
                [1 ]Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, 21205, USA.
                [2 ]Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, 21205, USA.
                [3 ]Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland, 21205, USA.
                Author notes
                Author information
                http://orcid.org/0000-0001-5782-8405
                http://orcid.org/0000-0003-3652-2540
                Article
                10.1101/2024.05.31.596831
                11185539
                38895453
                d08a8f0c-405e-435c-a2f0-eeaa9a0bd859

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.

                History
                Categories
                Article

                Comments

                Comment on this article