Na 0.44MnO 2 is a promising cathode material for sodium‐ion batteries owing to its excellent cycling stability and low cost. However, insufficient sodium storage sites still hinder its practical applications. Herein, a facile strategy to induce the efficient structural transformation from the tunnel to the layered type of Na 0.44MnO 2 by trace W‐doping for the first time is reported. The W‐doping not only enriches the sodium storage sites but also improves the cycling performance. As a result, the phase‐pure P2‐Na 0.44Mn 0.99W 0.01O 2 demonstrates an enhanced reversible specific capacity of 195.5 mAh g −1 and energy density of 517 Wh kg −1 at 0.1 C, accompanying superior cycling stability with capacity retention of 80% over 200 cycles. Moreover, the W‐doped samples show high structure stability in a moist atmosphere and can still maintain the original electrochemical performance after water treatment. In situ and ex situ characterizations reveal the enhanced structural stability of the P2‐Na 0.44Mn 0.99W 0.01O 2 electrodes. This work provides a facile strategy on the structural engineering of transition metal oxides to induce the tunnel‐to‐layered structure transformation and could shed light on the design and construction of stable and high‐capacity cathode materials.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.