0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Machine learning reveals diverse cell death patterns in lung adenocarcinoma prognosis and therapy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cancer cell growth, metastasis, and drug resistance pose significant challenges in the management of lung adenocarcinoma (LUAD). However, there is a deficiency in optimal predictive models capable of accurately forecasting patient prognoses and guiding the selection of targeted treatments. Programmed cell death (PCD) pathways play a pivotal role in the development and progression of various cancers, offering potential as prognostic indicators and drug sensitivity markers for LUAD patients. The development and validation of predictive models were conducted by integrating 13 PCD patterns with comprehensive analysis of bulk RNA, single-cell RNA transcriptomics, and pertinent clinicopathological details derived from TCGA-LUAD and six GEO datasets. Utilizing the machine learning algorithms, we identified ten critical differentially expressed genes associated with PCD in LUAD, namely CHEK2, KRT18, RRM2, GAPDH, MMP1, CHRNA5, TMPRSS4, ITGB4, CD79A, and CTLA4. Subsequently, we conducted a programmed cell death index (PCDI) based on these genes across the aforementioned cohorts and integrated this index with relevant clinical features to develop several prognostic nomograms. Furthermore, we observed a significant correlation between the PCDI and immune features in LUAD, including immune cell infiltration and the expression of immune checkpoint molecules. Additionally, we found that patients with a high PCDI score may exhibit resistance to immunotherapy and standard adjuvant chemotherapy regimens; however, they may benefit from other FDA-supported drugs such as docetaxel and dasatinib. In conclusion, the PCDI holds potential as a prognostic signature and can facilitate personalized treatment for LUAD patients.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            edgeR: a Bioconductor package for differential expression analysis of digital gene expression data

            Summary: It is expected that emerging digital gene expression (DGE) technologies will overtake microarray technologies in the near future for many functional genomics applications. One of the fundamental data analysis tasks, especially for gene expression studies, involves determining whether there is evidence that counts for a transcript or exon are significantly different across experimental conditions. edgeR is a Bioconductor software package for examining differential expression of replicated count data. An overdispersed Poisson model is used to account for both biological and technical variability. Empirical Bayes methods are used to moderate the degree of overdispersion across transcripts, improving the reliability of inference. The methodology can be used even with the most minimal levels of replication, provided at least one phenotype or experimental condition is replicated. The software may have other applications beyond sequencing data, such as proteome peptide count data. Availability: The package is freely available under the LGPL licence from the Bioconductor web site (http://bioconductor.org). Contact: mrobinson@wehi.edu.au
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              GSVA: gene set variation analysis for microarray and RNA-Seq data

              Background Gene set enrichment (GSE) analysis is a popular framework for condensing information from gene expression profiles into a pathway or signature summary. The strengths of this approach over single gene analysis include noise and dimension reduction, as well as greater biological interpretability. As molecular profiling experiments move beyond simple case-control studies, robust and flexible GSE methodologies are needed that can model pathway activity within highly heterogeneous data sets. Results To address this challenge, we introduce Gene Set Variation Analysis (GSVA), a GSE method that estimates variation of pathway activity over a sample population in an unsupervised manner. We demonstrate the robustness of GSVA in a comparison with current state of the art sample-wise enrichment methods. Further, we provide examples of its utility in differential pathway activity and survival analysis. Lastly, we show how GSVA works analogously with data from both microarray and RNA-seq experiments. Conclusions GSVA provides increased power to detect subtle pathway activity changes over a sample population in comparison to corresponding methods. While GSE methods are generally regarded as end points of a bioinformatic analysis, GSVA constitutes a starting point to build pathway-centric models of biology. Moreover, GSVA contributes to the current need of GSE methods for RNA-seq data. GSVA is an open source software package for R which forms part of the Bioconductor project and can be downloaded at http://www.bioconductor.org.
                Bookmark

                Author and article information

                Contributors
                syarhuang@163.com
                Journal
                NPJ Precis Oncol
                NPJ Precis Oncol
                NPJ Precision Oncology
                Nature Publishing Group UK (London )
                2397-768X
                26 February 2024
                26 February 2024
                2024
                : 8
                : 49
                Affiliations
                [1 ]GRID grid.8547.e, ISNI 0000 0001 0125 2443, Department of Respiratory Medicine, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, , Fudan University, ; Shanghai, 200031 China
                [2 ]Department of Otolaryngology, the Second Affiliated Hospital of the Naval Military Medical University (Shanghai Changzheng Hospital), ( https://ror.org/0103dxn66) Shanghai, 200003 China
                [3 ]GRID grid.73113.37, ISNI 0000 0004 0369 1660, Clinical Cancer Institute, Center for Translational Medicine, , Naval Medical University, ; Shanghai, 200433 China
                [4 ]GRID grid.16821.3c, ISNI 0000 0004 0368 8293, Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, , Shanghai Jiaotong University School of Medicine, ; Shanghai, 200011 China
                [5 ] Department of Interventional Pulmonology, Anhui Chest Hospital, Hefei, Anhui 230022 China
                Author information
                http://orcid.org/0000-0001-7410-2833
                Article
                538
                10.1038/s41698-024-00538-5
                10897292
                38409471
                8b1691d0-451e-42bd-9c7f-d6b17cf1d510
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 13 July 2023
                : 8 February 2024
                Funding
                Funded by: This study was funded by the Special Clinical Research Project of the Shanghai Municipal Health Commission (202140473).
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2024

                computational biology and bioinformatics,prognostic markers

                Comments

                Comment on this article