Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evidence from a Mouse Model That Epithelial Cell Migration and Mesenchymal-Epithelial Transition Contribute to Rapid Restoration of Uterine Tissue Integrity during Menstruation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In women dynamic changes in uterine tissue architecture occur during each menstrual cycle. Menses, characterised by the shedding of the upper functional layer of the endometrium, is the culmination of a cascade of irreversible changes in tissue function including stromal decidualisation, inflammation and production of degradative enzymes. The molecular mechanisms that contribute to the rapid restoration of tissue homeostasis at time of menses are poorly understood.

          Methodology

          A modified mouse model of menses was developed to focus on the events occurring within the uterine lining during endometrial shedding/repair. Decidualisation, vaginal bleeding, tissue architecture and cell proliferation were evaluated at 4, 8, 12, and 24 hours after progesterone (P4) withdrawal; mice received a single injection of bromodeoxyuridine (BrdU) 90 mins before culling. Expression of genes implicated in the regulation of mesenchymal to epithelial transition (MET) was determined using a RT2 PCR profiler array, qRTPCR and bioinformatic analysis.

          Principal Findings

          Mice exhibited vaginal bleeding between 4 and 12 hours after P4 withdrawal, concomitant with detachment of the decidualised cell mass from the basal portion of the endometrial lining. Immunostaining for BrdU and pan cytokeratin revealed evidence of epithelial cell proliferation and migration. Cells that appeared to be in transition from a mesenchymal to an epithelial cell identity were identified within the stromal compartment. Analysis of mRNAs encoding genes expressed exclusively in the epithelial or stromal compartments, or implicated in MET, revealed dynamic changes in expression, consistent with a role for reprogramming of mesenchymal cells so that they could contribute to re-epithelialisation.

          Conclusions/Significance

          These studies have provided novel insights into the cellular processes that contribute to re-epithelialisation post-menses implicating both epithelial cell migration and mesenchymal cell differentiation in restoration of an intact epithelial cell layer. These insights may inform development of new therapies to induce rapid healing in the endometrium and other tissues and offer hope to women who suffer from heavy menstrual bleeding.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Endocrine regulation of menstruation.

          In women, endometrial morphology and function undergo characteristic changes every menstrual cycle. These changes are crucial for perpetuation of the species and are orchestrated to prepare the endometrium for implantation of a conceptus. In the absence of pregnancy, the human endometrium is sloughed off at menstruation over a period of a few days. Tissue repair, growth, angiogenesis, differentiation, and receptivity ensue to prepare the endometrium for implantation in the next cycle. Ovarian sex steroids through interaction with different cognate nuclear receptors regulate the expression of a cascade of local factors within the endometrium that act in an autocrine/paracrine and even intracrine manner. Such interactions initiate complex events within the endometrium that are crucial for implantation and, in the absence thereof, normal menstruation. A clearer understanding of regulation of normal endometrial function will provide an insight into causes of menstrual dysfunction such as menorrhagia (heavy menstrual bleeding) and dysmenorrhea (painful periods). The molecular pathways that precipitate these pathologies remain largely undefined. Future research efforts to provide greater insight into these pathways will lead to the development of novel drugs that would target identified aberrations in expression and/or of local uterine factors that are crucial for normal endometrial function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A conserved Hox axis in the mouse and human female reproductive system: late establishment and persistent adult expression of the Hoxa cluster genes.

            The mammalian female reproductive system arises from the uniform paramesonephric duct. The molecular mechanisms that establish differential development along this axis are unknown. We determined the pattern and timing of genes of the Hoxa axis in the development of the Müllerian tract. Hoxa-9, Hoxa-10, Hoxa-11, and Hoxa-13 are all expressed along the length of the paramesonephric duct in the embryonic mouse. After birth, a spatial Hox axis is established, corresponding to the postnatal differentiation of this organ system in the mouse. Hoxa-9 is expressed in the fallopian tubes, Hoxa-10 in the uterus, Hoxa-11 in the uterus and uterine cervix, and Hoxa-13 in the upper vagina. This expression pattern follows the paradigm of spatial colinearity but is a novel exception to temporal colinearity that has been considered typical of Hox genes. These genes remain expressed in the adult mouse and are expressed in the same pattern in the human. The female reproductive system undergoes dramatic structural and functional changes during the estrous cycle and in pregnancy, retaining a high degree of developmental plasticity. The late establishment of a Hox axis and persistent expression of Hox genes in the adult may play an important role in preserving this plasticity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Reconstruction of Endometrium from Human Endometrial Side Population Cell Lines

              Endometrial regeneration is mediated, at least in part, by the existence of a specialized somatic stem cell (SSC) population recently identified by several groups using the side population (SP) technique. We previously demonstrated that endometrial SP displays genotypic, phenotypic and the functional capability to develop human endometrium after subcutaneous injection in NOD-SCID mice. We have now established seven human endometrial SP (hESP) cell lines (ICE 1–7): four from the epithelial and three from the stromal fraction, respectively. SP cell lines were generated under hypoxic conditions based on their cloning efficiency ability, cultured for 12–15 passages (20 weeks) and cryopreserved. Cell lines displayed normal 46XX karyotype, intermediate telomerase activity pattern and expressed mRNAs encoding proteins that are considered characteristic of undifferentiated cells (Oct-4, GDF3, DNMT3B, Nanog, GABR3) and those of mesodermal origin (WT1, Cardiac Actin, Enolase, Globin, REN). Phenotype analysis corroborated their epithelial (CD9+) or stromal (vimentin+) cell origin and mesenchymal (CD90+, CD73+ and CD45−) attributes. Markers considered characteristic of ectoderm or endoderm were not detected. Cells did not express either estrogen receptor alpha (ERα) or progesterone receptor (PR). The hESP cell lines were able to differentiate in vitro into adipocytes and osteocytes, which confirmed their mesenchymal origin. Finally, we demonstrated their ability to generate human endometrium when transplanted beneath the renal capsule of NOD-SCID mice. These findings confirm that SP cells exhibit key features of human endometrial SSC and open up new possibilities for the understanding of gynecological disorders such as endometriosis or Asherman syndrome. Our cell lines can be a valuable model to investigate new targets for endometrium proliferation in endometriosis.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                22 January 2014
                : 9
                : 1
                : e86378
                Affiliations
                [1]Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
                AMS Biotechnology, United Kingdom
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: FLC AM DAG HODC PTKS. Performed the experiments: FLC AM AE. Analyzed the data: FLC. Wrote the paper: FLC AM DAG HODC PTKS.

                Article
                PONE-D-13-39680
                10.1371/journal.pone.0086378
                3899239
                24466063
                89f88f86-6cad-4753-9da3-597300afcc41
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 25 September 2013
                : 10 December 2013
                Page count
                Pages: 12
                Funding
                These studies were supported by MRC Programme Grant G1100356/1 and a MRC funded PhD studentship to FLC. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Reproductive System
                Reproductive Physiology
                Developmental Biology
                Morphogenesis
                Cell Migration
                Histology
                Medicine
                Anatomy and Physiology
                Reproductive System
                Reproductive Physiology
                Physiological Processes
                Endocrinology
                Obstetrics and Gynecology
                Women's Health

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content221

                Cited by46

                Most referenced authors263