43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dengue in the Middle East and North Africa: A Systematic Review

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Dengue virus (DENV) infection is widespread and its disease burden has increased in past decades. However, little is known about the epidemiology of dengue in the Middle East and North Africa (MENA).

          Methodology / Principal Findings

          Following Cochrane Collaboration guidelines and reporting our findings following PRISMA guidelines, we systematically reviewed available records across MENA describing dengue occurrence in humans (prevalence studies, incidence studies, and outbreak reports), occurrence of suitable vectors ( Aedes aegypti and Aedes albopictus), and DENV vector infection rates. We identified 105 human prevalence measures in 13 of 24 MENA countries; 81 outbreaks reported from 9 countries from 1941–2015; and reports of Ae. aegypti and/or Ae. albopictus occurrence in 15 countries. The majority of seroprevalence studies were reported from the Red Sea region and Pakistan, with multiple studies indicating >20% DENV seroprevalence in general populations (median 25%, range 0–62%) in these subregions. Fifty percent of these studies were conducted prior to 1990. Multiple studies utilized assays susceptible to serologic cross-reactions and 5% of seroprevalence studies utilized viral neutralization testing. There was considerable heterogeneity in study design and outbreak reporting, as well as variability in subregional study coverage, study populations, and laboratory methods used for diagnosis.

          Conclusions / Significance

          DENV seroprevalence in the MENA is high among some populations in the Red Sea region and Pakistan, while recent outbreaks in these subregions suggest increasing incidence of DENV which may be driven by a variety of ecologic and social factors. However, there is insufficient study coverage to draw conclusions about Aedes or DENV presence in multiple MENA countries. These findings illustrate the epidemiology of DENV in the MENA while revealing priorities for DENV surveillance and Aedes control.

          Author Summary

          Dengue is a mosquito-transmitted flavivirus whose global distribution and disease incidence has increased in recent decades. In the Middle East and North Africa, the epidemiology of dengue remains poorly characterized despite increasing reports of outbreaks and transmission in new areas. In order to understand the evidence supporting the epidemiology of this virus in the region and the areas in need of further research, we conducted a systematic review of studies reporting human prevalence, incidence, and infection rates in the virus’ main mosquito vectors, Aedes aegypti and Aedes albopictus. Among the studies identified, the Red Sea subregion and Pakistan reported the highest seroprevalence estimates for dengue. However, we encountered substantial heterogeneity in the distribution, quality, and quantity of published studies. These findings inform future research and surveillance priorities for DENV in the MENA region.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: not found

          Epidemiology of dengue: past, present and future prospects

          Dengue is currently regarded globally as the most important mosquito-borne viral disease. A history of symptoms compatible with dengue can be traced back to the Chin Dynasty of 265–420 AD. The virus and its vectors have now become widely distributed throughout tropical and subtropical regions of the world, particularly over the last half-century. Significant geographic expansion has been coupled with rapid increases in incident cases, epidemics, and hyperendemicity, leading to the more severe forms of dengue. Transmission of dengue is now present in every World Health Organization (WHO) region of the world and more than 125 countries are known to be dengue endemic. The true impact of dengue globally is difficult to ascertain due to factors such as inadequate disease surveillance, misdiagnosis, and low levels of reporting. Currently available data likely grossly underestimates the social, economic, and disease burden. Estimates of the global incidence of dengue infections per year have ranged between 50 million and 200 million; however, recent estimates using cartographic approaches suggest this number is closer to almost 400 million. The expansion of dengue is expected to increase due to factors such as the modern dynamics of climate change, globalization, travel, trade, socioeconomics, settlement and also viral evolution. No vaccine or specific antiviral therapy currently exists to address the growing threat of dengue. Prompt case detection and appropriate clinical management can reduce the mortality from severe dengue. Effective vector control is the mainstay of dengue prevention and control. Surveillance and improved reporting of dengue cases is also essential to gauge the true global situation as indicated in the objectives of the WHO Global Strategy for Dengue Prevention and Control, 2012–2020. More accurate data will inform the prioritization of research, health policy, and financial resources toward reducing this poorly controlled disease. The objective of this paper is to review historical and current epidemiology of dengue worldwide and, additionally, reflect on some potential reasons for expansion of dengue into the future.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chikungunya: a re-emerging virus.

            In the past decade, chikungunya--a virus transmitted by Aedes spp mosquitoes--has re-emerged in Africa, southern and southeastern Asia, and the Indian Ocean Islands as the cause of large outbreaks of human disease. The disease is characterised by fever, headache, myalgia, rash, and both acute and persistent arthralgia. The disease can cause severe morbidity and, since 2005, fatality. The virus is endemic to tropical regions, but the spread of Aedes albopictus into Europe and the Americas coupled with high viraemia in infected travellers returning from endemic areas increases the risk that this virus could establish itself in new endemic regions. This Seminar focuses on the re-emergence of this disease, the clinical manifestations, pathogenesis of virus-induced arthralgia, diagnostic techniques, and various treatment modalities. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Impact of climate change and other factors on emerging arbovirus diseases.

              While some skeptics remain unconvinced that global climate change is a reality, there is no doubt that during the past 50 years or so, patterns of emerging arbovirus diseases have changed significantly. Can this be attributed to climate change? Climate is a major factor in determining: (1) the geographic and temporal distribution of arthropods; (2) characteristics of arthropod life cycles; (3) dispersal patterns of associated arboviruses; (4) the evolution of arboviruses; and (5) the efficiency with which they are transmitted from arthropods to vertebrate hosts. Thus, under the influence of increasing temperatures and rainfall through warming of the oceans, and alteration of the natural cycles that stabilise climate, one is inevitably drawn to the conclusion that arboviruses will continue to emerge in new regions. For example, we cannot ignore the unexpected but successful establishment of chikungunya fever in northern Italy, the sudden appearance of West Nile virus in North America, the increasing frequency of Rift Valley fever epidemics in the Arabian Peninsula, and very recently, the emergence of Bluetongue virus in northern Europe. In this brief review we ask the question, are these diseases emerging because of climate change or do other factors play an equal or even more important role in their emergence?
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, CA USA )
                1935-2727
                1935-2735
                7 December 2016
                December 2016
                : 10
                : 12
                : e0005194
                Affiliations
                [1 ]Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America
                [2 ]Erasmus Medical Centre, Rotterdam, The Netherlands
                [3 ]National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands
                [4 ]Department of Healthcare Policy and Research, Weill Cornell Medical College, Cornell University, New York, New York, United States of America
                [5 ]Infectious Disease Epidemiology Group, Weill Cornell Medical College in Qatar, Cornell University, Qatar Foundation, Education City, Doha, Qatar
                [6 ]College of Public Health, Hamad bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar
                University of Heidelberg, GERMANY
                Author notes

                The authors have declared that no competing interests exist.

                • Conceptualization: JMH NBC CBEMR MPGK LJAR.

                • Formal analysis: JMH LJAR.

                • Investigation: JMH NBC.

                • Methodology: MJG MPGK LJAR.

                • Software: LJAR.

                • Supervision: MJG CBEMR MPGK LJAR.

                • Writing – original draft: JMH.

                Article
                PNTD-D-16-00557
                10.1371/journal.pntd.0005194
                5142774
                27926925
                87d9966c-4ad6-4fd3-b25f-56b6a2f622d7
                © 2016 Humphrey et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 25 March 2016
                : 17 November 2016
                Page count
                Figures: 3, Tables: 6, Pages: 31
                Funding
                This publication was made possible by support provided by the Biomedical Research Program and the Biostatistics, Epidemiology, and Biomathematics Research Core at the Weill Cornell Medical College in Qatar. JMH received support from NIH Research Training Grant T32 AI007613. The statements made herein are solely the responsibility of the authors. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Flaviviruses
                West Nile virus
                Biology and life sciences
                Microbiology
                Medical microbiology
                Microbial pathogens
                Viral pathogens
                Flaviviruses
                West Nile virus
                Medicine and health sciences
                Pathology and laboratory medicine
                Pathogens
                Microbial pathogens
                Viral pathogens
                Flaviviruses
                West Nile virus
                Biology and life sciences
                Organisms
                Viruses
                Viral pathogens
                Flaviviruses
                West Nile virus
                Medicine and Health Sciences
                Epidemiology
                Disease Vectors
                Insect Vectors
                Mosquitoes
                Aedes Aegypti
                Biology and Life Sciences
                Organisms
                Animals
                Invertebrates
                Arthropoda
                Insects
                Mosquitoes
                Aedes Aegypti
                Research and Analysis Methods
                Immunologic Techniques
                Immunoassays
                Enzyme-Linked Immunoassays
                Medicine and Health Sciences
                Infectious Diseases
                Vector-Borne Diseases
                People and Places
                Geographical Locations
                Asia
                Pakistan
                Medicine and Health Sciences
                Epidemiology
                Disease Vectors
                Insect Vectors
                Mosquitoes
                Biology and Life Sciences
                Organisms
                Animals
                Invertebrates
                Arthropoda
                Insects
                Mosquitoes
                People and Places
                Geographical Locations
                Africa
                Sudan
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Serology
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article