Uropathogenic Escherichia coli (UPEC) is a leading etiological agent of bacteremia in humans. Virulence mechanisms of UPEC in the context of urinary tract infections have been subjected to extensive research. However, understanding of the fitness mechanisms used by UPEC during bacteremia and systemic infection is limited. A forward genetic screen was utilized to detect transposon insertion mutants with fitness defects during colonization of mouse spleens. An inoculum comprised of 360,000 transposon mutants in the UPEC strain CFT073, cultured from the blood of a patient with pyelonephritis, was used to inoculate mice intravenously. Transposon insertion sites in the inoculum (input) and bacteria colonizing the spleen (output) were identified using high-throughput sequencing of transposon-chromosome junctions. Using frequencies of representation of each insertion mutant in the input and output samples, 242 candidate fitness genes were identified. Co-infection experiments with each of 11 defined mutants and the wild-type strain demonstrated that 82% (9 of 11) of the tested candidate fitness genes were required for optimal fitness in a mouse model of systemic infection. Genes involved in biosynthesis of poly-N-acetyl glucosamine ( pgaABCD), major and minor pilin of a type IV pilus ( c2394 and c2395), oligopeptide uptake periplasmic-binding protein ( oppA), sensitive to antimicrobial peptides ( sapABCDF), putative outer membrane receptor ( yddB), zinc metallopeptidase ( pqqL), a shikimate pathway gene ( c1220) and autotransporter serine proteases ( pic and vat) were further characterized. Here, we report the first genome-wide identification of genes that contribute to fitness in UPEC during systemic infection in a mammalian host. These fitness factors may represent targets for developing novel therapeutics against UPEC.
Uropathogenic E. coli is a major cause of bacterial bloodstream infections in humans. Dissemination of E. coli into the bloodstream during urinary tract infections may lead to potentially fatal complications. This pathogen is becoming increasingly resistant to currently used antibiotics. To develop additional tools to treat such infections, a thorough understanding of the mechanism of pathogenesis is required. Here, we report major progress towards that goal by identifying bacterial genes that are critical for the ability of this pathogen to cause bloodstream infections using a mouse model of infection. This study sheds light on the conditions encountered by E. coli during systemic infection. Further research on the genes identified in this study may reveal bacterial targets that can be used to develop novel therapeutics against bloodstream infections caused by E. coli.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.