13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      p190RhoGAP is cell cycle regulated and affects cytokinesis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          p190RhoGAP (p190), a Rho family GTPase-activating protein, regulates actin stress fiber dynamics via hydrolysis of Rho-GTP. Recent data suggest that p190 also regulates cell proliferation. To gain insights into the cellular process(es) affected by p190, we altered its levels by conditional or transient overexpression. Overexpression of p190 resulted in a multinucleated phenotype that was dependent on the GTPase-activating protein domain. Confocal immunofluorescence microscopy revealed that both endogenous and exogenous p190 localized to the newly forming and contracting cleavage furrow of dividing cells. However, overexpression of p190 resulted in abnormal positioning of the furrow specification site and unequal daughter cell partitioning, as well as faulty furrow contraction and multinucleation. Furthermore, levels of endogenous p190 protein were transiently decreased in late mitosis via an ubiquitin-mediated degradation process that required the NH 2-terminal GTP-binding region of p190. These results suggest that a cell cycle–regulated reduction in endogenous p190 levels is linked to completion of cytokinesis and generation of viable cell progeny.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          RADIOAUTOGRAPHIC STUDIES OF CHOLINE INCORPORATION INTO PERIPHERAL NERVE MYELIN

          This radioautographic study was designed to localize the cytological sites involved in the incorporation of a lipid precursor into the myelin and the myelin-related cell of the peripheral nervous system. Both myelinating and fully myelinated cultures of rat dorsal root ganglia were exposed to a 30-min pulse of tritiated choline and either fixed immediately or allowed 6 or 48 hr of chase incubation before fixation. After Epon embedding, light and electron microscopic radioautograms were prepared with Ilford L-4 emulsion. Analysis of the pattern of choline incorporation into myelinating cultures indicated that radioactivity appeared all along the length of the internode, without there being a preferential site of initial incorporation. Light microscopic radioautograms of cultures at varying states of maturity were compared in order to determine the relative degree of myelin labeling. This analysis indicated that the myelin-Schwann cell unit in the fully myelinated cultures incorporated choline as actively as did this unit in the myelinating cultures. Because of technical difficulties, it was not possible to determine the precise localization of the incorporated radioactivity within the compact myelin. These data are related to recent biochemical studies indicating that the mature myelin of the central nervous system does incorporate a significant amount of lipid precursor under the appropriate experimental conditions. These observations support the concept that a significant amount of myelin-related metabolic activity occurs in mature tissue; this activity is considered part of an essential and continuous process of myelin maintenance and repair.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein.

            The von Hippel-Lindau tumor suppressor protein (pVHL) has emerged as a key factor in cellular responses to oxygen availability, being required for the oxygen-dependent proteolysis of alpha subunits of hypoxia inducible factor-1 (HIF). Mutations in VHL cause a hereditary cancer syndrome associated with dysregulated angiogenesis, and up-regulation of hypoxia inducible genes. Here we investigate the mechanisms underlying these processes and show that extracts from VHL-deficient renal carcinoma cells have a defect in HIF-alpha ubiquitylation activity which is complemented by exogenous pVHL. This defect was specific for HIF-alpha among a range of substrates tested. Furthermore, HIF-alpha subunits were the only pVHL-associated proteasomal substrates identified by comparison of metabolically labeled anti-pVHL immunoprecipitates from proteosomally inhibited cells and normal cells. Analysis of pVHL/HIF-alpha interactions defined short sequences of conserved residues within the internal transactivation domains of HIF-alpha molecules sufficient for recognition by pVHL. In contrast, while full-length pVHL and the p19 variant interact with HIF-alpha, the association was abrogated by further N-terminal and C-terminal truncations. The interaction was also disrupted by tumor-associated mutations in the beta-domain of pVHL and loss of interaction was associated with defective HIF-alpha ubiquitylation and regulation, defining a mechanism by which these mutations generate a constitutively hypoxic pattern of gene expression promoting angiogenesis. The findings indicate that pVHL regulates HIF-alpha proteolysis by acting as the recognition component of a ubiquitin ligase complex, and support a model in which its beta domain interacts with short recognition sequences in HIF-alpha subunits.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1.

              The ordered progression through the cell cycle depends on regulating the abundance of several proteins through ubiquitin-mediated proteolysis. Degradation is precisely timed and specific. One key component of the degradation system, the anaphase promoting complex (APC), is a ubiquitin protein ligase. It is activated both during mitosis and late in mitosis/G(1), by the WD repeat proteins Cdc20 and Cdh1, respectively. These activators target distinct sets of substrates. Cdc20-APC requires a well-defined destruction box (D box), whereas Cdh1-APC confers a different and as yet unidentified specificity. We have determined the sequence specificity for Cdh1-APC using two assays, ubiquitination in a completely defined and purified system and degradation promoted by Cdh1-APC in Xenopus extracts. Cdc20 is itself a Cdh1-APC substrate. Vertebrate Cdc20 lacks a D box and therefore is recognized by Cdh1-APC through a different sequence. By analysis of Cdc20 as a substrate, we have identified a new recognition signal. This signal, composed of K-E-N, serves as a general targeting signal for Cdh1-APC. Like the D box, it is transposable to other proteins. Using the KEN box as a template, we have identified cell cycle genes Nek2 and B99 as additional Cdh1-APC substrates. Mutation in the KEN box stabilizes all three proteins against ubiquitination and degradation.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                10 November 2003
                : 163
                : 3
                : 571-582
                Affiliations
                Department of Microbiology and The Cancer Center, University of Virginia Health System, Charlottesville, VA 22908
                Author notes

                Address correspondence to S.J. Parsons, Dept. of Microbiology and Cancer Center, University of Virginia Health System, P.O. Box 800734, Charlottesville, VA 22908. Tel.: (434) 924-2352. Fax: (434) 982-0689. email: sap@ 123456virginia.edu

                Article
                200308007
                10.1083/jcb.200308007
                2173658
                14610059
                85c4f5bd-be3f-4a68-83d0-80943e4d4585
                Copyright © 2003, The Rockefeller University Press
                History
                : 4 August 2003
                : 29 September 2003
                Categories
                Article

                Cell biology
                rho; cell cycle; mitosis; ubiquitination; degradation
                Cell biology
                rho; cell cycle; mitosis; ubiquitination; degradation

                Comments

                Comment on this article