38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Polyploidization and Cancer 

      Understanding Cytokinesis Failure

      other
      ,
      Springer New York

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references280

          • Record: found
          • Abstract: found
          • Article: not found

          SNAREs--engines for membrane fusion.

          Since the discovery of SNARE proteins in the late 1980s, SNAREs have been recognized as key components of protein complexes that drive membrane fusion. Despite considerable sequence divergence among SNARE proteins, their mechanism seems to be conserved and is adaptable for fusion reactions as diverse as those involved in cell growth, membrane repair, cytokinesis and synaptic transmission. A fascinating picture of these robust nanomachines is emerging.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Poly(ADP-ribose): novel functions for an old molecule.

            The addition to proteins of the negatively charged polymer of ADP-ribose (PAR), which is synthesized by PAR polymerases (PARPs) from NAD(+), is a unique post-translational modification. It regulates not only cell survival and cell-death programmes, but also an increasing number of other biological functions with which novel members of the PARP family have been associated. These functions include transcriptional regulation, telomere cohesion and mitotic spindle formation during cell division, intracellular trafficking and energy metabolism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1.

              CDK1 is a nonredundant cyclin-dependent kinase (CDK) with an essential role in mitosis, but its multiple functions still are poorly understood at a molecular level. Here we identify a selective small-molecule inhibitor of CDK1 that reversibly arrests human cells at the G(2)/M border of the cell cycle and allows for effective cell synchronization in early mitosis. Inhibition of CDK1 during cell division revealed that its activity is necessary and sufficient for maintaining the mitotic state of the cells, preventing replication origin licensing and premature cytokinesis. Although CDK1 inhibition for up to 24 h is well tolerated, longer exposure to the inhibitor induces apoptosis in tumor cells, suggesting that selective CDK1 inhibitors may have utility in cancer therapy.
                Bookmark

                Author and book information

                Book Chapter
                2010
                : 27-55
                10.1007/978-1-4419-6199-0_3
                20687468
                5d062ad1-7ab2-462c-800f-9fb1a9668485
                History

                Comments

                Comment on this book