4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Wearable Sensors and Artificial Intelligence for Physical Ergonomics: A Systematic Review of Literature

      , , , , ,
      Diagnostics
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Physical ergonomics has established itself as a valid strategy for monitoring potential disorders related, for example, to working activities. Recently, in the field of physical ergonomics, several studies have also shown potential for improvement in experimental methods of ergonomic analysis, through the combined use of artificial intelligence, and wearable sensors. In this regard, this review intends to provide a first account of the investigations carried out using these combined methods, considering the period up to 2021. The method that combines the information obtained on the worker through physical sensors (IMU, accelerometer, gyroscope, etc.) or biopotential sensors (EMG, EEG, EKG/ECG), with the analysis through artificial intelligence systems (machine learning or deep learning), offers interesting perspectives from both diagnostic, prognostic, and preventive points of view. In particular, the signals, obtained from wearable sensors for the recognition and categorization of the postural and biomechanical load of the worker, can be processed to formulate interesting algorithms for applications in the preventive field (especially with respect to musculoskeletal disorders), and with high statistical power. For Ergonomics, but also for Occupational Medicine, these applications improve the knowledge of the limits of the human organism, helping in the definition of sustainability thresholds, and in the ergonomic design of environments, tools, and work organization. The growth prospects for this research area are the refinement of the procedures for the detection and processing of signals; the expansion of the study to assisted working methods (assistive robots, exoskeletons), and to categories of workers suffering from pathologies or disabilities; as well as the development of risk assessment systems that exceed those currently used in ergonomics in precision and agility.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration.

          Systematic reviews and meta-analyses are essential to summarize evidence relating to efficacy and safety of health care interventions accurately and reliably. The clarity and transparency of these reports, however, is not optimal. Poor reporting of systematic reviews diminishes their value to clinicians, policy makers, and other users. Since the development of the QUOROM (QUality Of Reporting Of Meta-analysis) Statement--a reporting guideline published in 1999--there have been several conceptual, methodological, and practical advances regarding the conduct and reporting of systematic reviews and meta-analyses. Also, reviews of published systematic reviews have found that key information about these studies is often poorly reported. Realizing these issues, an international group that included experienced authors and methodologists developed PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) as an evolution of the original QUOROM guideline for systematic reviews and meta-analyses of evaluations of health care interventions. The PRISMA Statement consists of a 27-item checklist and a four-phase flow diagram. The checklist includes items deemed essential for transparent reporting of a systematic review. In this Explanation and Elaboration document, we explain the meaning and rationale for each checklist item. For each item, we include an example of good reporting and, where possible, references to relevant empirical studies and methodological literature. The PRISMA Statement, this document, and the associated Web site (http://www.prisma-statement.org/) should be helpful resources to improve reporting of systematic reviews and meta-analyses.
            Bookmark
            • Record: found
            • Abstract: not found
            • Book: not found

            Cochrane Handbook for Systematic Reviews of Interventions

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Risk factors for work-related musculoskeletal disorders: A systematic review of recent longitudinal studies.

              This systematic review was designed and conducted in an effort to evaluate the evidence currently available for the many suggested risk factors for work-related musculoskeletal disorders. To identify pertinent literature we searched four electronic databases (Cinahl, Embase, Medline, and The Cochrane Library). The search strategies combined terms for musculoskeletal disorders, work, and risk factors. Only case-control or cohort studies were included. A total of 1,761 non-duplicated articles were identified and screened, and 63 studies were reviewed and integrated in this article. The risk factors identified for the development of work-related musculoskeletal disorders were divided and organized according to the affected body part, type of risk factor (biomechanical, psychosocial, or individual) and level of evidence (strong, reasonable, or insufficient evidence). Risk factors with at least reasonable evidence of a causal relationship for the development of work-related musculoskeletal disorders include: heavy physical work, smoking, high body mass index, high psychosocial work demands, and the presence of co-morbidities. The most commonly reported biomechanical risk factors with at least reasonable evidence for causing WMSD include excessive repetition, awkward postures, and heavy lifting. Additional high methodological quality studies are needed to further understand and provide stronger evidence of the causal relationship between risk factors and work-related musculoskeletal disorders. The information provided in this article may be useful to healthcare providers, researchers, and ergonomists interested on risk identification and design of interventions to reduce the rates of work-related musculoskeletal disorders. 2009 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                DIAGC9
                Diagnostics
                Diagnostics
                MDPI AG
                2075-4418
                December 2022
                December 05 2022
                : 12
                : 12
                : 3048
                Article
                10.3390/diagnostics12123048
                85312dae-7f1c-4df4-9484-5bc1cd4a06e0
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article