23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lactate dehydrogenase supports lactate oxidation in mitochondria isolated from different mouse tissues

      brief-report
      a , a , 1 , a , b ,
      Redox Biology
      Elsevier

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Research over the past seventy years has established that mitochondrial- l-lactate dehydrogenase (m-L-LDH) is vital for mitochondrial bioenergetics. However, in recent report, Fulghum et al. concluded that lactate is a poor fuel for mitochondrial respiration [1]. In the present study, we have followed up on these findings and conducted an independent investigation to determine if lactate can support mitochondrial bioenergetics. We demonstrate herein that lactate can fuel the bioenergetics of heart, muscle, and liver mitochondria. Lactate was just as effective as pyruvate at stimulating mitochondrial coupling efficiency. Inclusion of LDH (sodium oxamate or GSK 2837808A) and pyruvate dehydrogenase (PDH; CPI-613) inhibitors abolished respiration in mitochondria energized with lactate. Lactate also fueled mitochondrial ROS generation and was just as effective as pyruvate at stimulating H 2O 2 production. Additionally, lactate-induced ROS production was inhibited by both LDH and PDH inhibitors. Enzyme activity measurements conducted on permeabilized mitochondria revealed that LDH is localized in mitochondria. In aggregate, we can conclude that mitochondrial LDH fuels bioenergetics in several tissues by oxidizing lactate.

          Graphical abstract

          Highlights

          • Lactate can fuel mitochondrial respiration.

          • Lactate serves as a substrate for H 2O 2 production.

          • Mitochondria contain LDH.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Cell-cell and intracellular lactate shuttles.

          Once thought to be the consequence of oxygen lack in contracting skeletal muscle, the glycolytic product lactate is formed and utilized continuously in diverse cells under fully aerobic conditions. 'Cell-cell' and 'intracellular lactate shuttle' concepts describe the roles of lactate in delivery of oxidative and gluconeogenic substrates as well as in cell signalling. Examples of the cell-cell shuttles include lactate exchanges between between white-glycolytic and red-oxidative fibres within a working muscle bed, and between working skeletal muscle and heart, brain, liver and kidneys. Examples of intracellular lactate shuttles include lactate uptake by mitochondria and pyruvate for lactate exchange in peroxisomes. Lactate for pyruvate exchanges affect cell redox state, and by itself lactate is a ROS generator. In vivo, lactate is a preferred substrate and high blood lactate levels down-regulate the use of glucose and free fatty acids (FFA). As well, lactate binding may affect metabolic regulation, for instance binding to G-protein receptors in adipocytes inhibiting lipolysis, and thus decreasing plasma FFA availability. In vitro lactate accumulation upregulates expression of MCT1 and genes coding for other components of the mitochondrial reticulum in skeletal muscle. The mitochondrial reticulum in muscle and mitochondrial networks in other aerobic tissues function to establish concentration and proton gradients necessary for cells with high mitochondrial densities to oxidize lactate. The presence of lactate shuttles gives rise to the realization that glycolytic and oxidative pathways should be viewed as linked, as opposed to alternative, processes, because lactate, the product of one pathway, is the substrate for the other.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Brain lactate metabolism: the discoveries and the controversies.

            Potential roles for lactate in the energetics of brain activation have changed radically during the past three decades, shifting from waste product to supplemental fuel and signaling molecule. Current models for lactate transport and metabolism involving cellular responses to excitatory neurotransmission are highly debated, owing, in part, to discordant results obtained in different experimental systems and conditions. Major conclusions drawn from tabular data summarizing results obtained in many laboratories are as follows: Glutamate-stimulated glycolysis is not an inherent property of all astrocyte cultures. Synaptosomes from the adult brain and many preparations of cultured neurons have high capacities to increase glucose transport, glycolysis, and glucose-supported respiration, and pathway rates are stimulated by glutamate and compounds that enhance metabolic demand. Lactate accumulation in activated tissue is a minor fraction of glucose metabolized and does not reflect pathway fluxes. Brain activation in subjects with low plasma lactate causes outward, brain-to-blood lactate gradients, and lactate is quickly released in substantial amounts. Lactate utilization by the adult brain increases during lactate infusions and strenuous exercise that markedly increase blood lactate levels. Lactate can be an 'opportunistic', glucose-sparing substrate when present in high amounts, but most evidence supports glucose as the major fuel for normal, activated brain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle.

              To evaluate the potential role of mitochondrial lactate dehydrogenase (LDH) in tissue lactate clearance and oxidation in vivo, isolated rat liver, cardiac, and skeletal muscle mitochondria were incubated with lactate, pyruvate, glutamate, and succinate. As well, alpha-cyano-4-hydroxycinnamate (CINN), a known monocarboxylate transport inhibitor, and oxamate, a known LDH inhibitor were used. Mitochondria readily oxidized pyruvate and lactate, with similar state 3 and 4 respiratory rates, respiratory control (state 3/state 4), and ADP/O ratios. With lactate or pyruvate as substrates, alpha-cyano-4-hydroxycinnamate blocked the respiratory response to added ADP, but the block was bypassed by addition of glutamate (complex I-linked) and succinate (complex II-linked) substrates. Oxamate increased pyruvate (approximately 10-40%), but blocked lactate oxidation. Gel electrophoresis and electron microscopy indicated LDH isoenzyme distribution patterns to display tissue specificity, but the LDH isoenzyme patterns in isolated mitochondria were distinct from those in surrounding cell compartments. In heart, LDH-1 (H4) was concentrated in mitochondria whereas LDH-5 (M4) was present in both mitochondria and surrounding cytosol and organelles. LDH-5 predominated in liver but was more abundant in mitochondria than elsewhere. Because lactate exceeds cytosolic pyruvate concentration by an order of magnitude, we conclude that lactate is the predominant monocarboxylate oxidized by mitochondria in vivo. Mammalian liver and striated muscle mitochondria can oxidize exogenous lactate because of an internal LDH pool that facilitates lactate oxidation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Redox Biol
                Redox Biol
                Redox Biology
                Elsevier
                2213-2317
                05 October 2019
                January 2020
                05 October 2019
                : 28
                : 101339
                Affiliations
                [a ]Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
                [b ]The School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Ste.-Anne-de-Bellevue, Quebec, Canada
                Author notes
                []Corresponding author. The School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada. ryan.mailloux@ 123456mcgill.ca
                [1]

                Both authors contributed equally to this work.

                Article
                S2213-2317(19)31117-6 101339
                10.1016/j.redox.2019.101339
                6812140
                31610469
                84eb94b9-343e-4fc5-8463-de4967e18b6c
                © 2019 The Authors. Published by Elsevier B.V.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 13 September 2019
                : 3 October 2019
                : 4 October 2019
                Categories
                Short Communication

                Comments

                Comment on this article