0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Induction of m 6A methylation in adipocyte exosomal LncRNAs mediates myeloma drug resistance

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Therapeutic resistance occurs in most patients with multiple myeloma (MM). One of the key mechanisms for MM drug resistance comes from the interaction between MM cells and adipocytes that inhibits drug-induced apoptosis in MM cells; MM cells reprogram adipocytes to morph into different characterizations, including exosomes, which are important for tumor-stroma cellular communication. However, the mechanism by which exosomes mediate the cellular machinery of the vicious cycle between MM cells and adipocytes remains unclear.

          Methods

          Adipocytes were either isolated from bone marrow aspirates of healthy donors or MM patients or derived from mesenchymal stem cells. Co-culturing normal adipocytes with MM cells was used to generate MM-associated adipocytes. Exosomes were collected from the culture medium of adipocytes. Annexin V-binding and TUNEL assays were performed to assess MM cell apoptosis. Methyltransferase activity assay and dot blotting were used to access the m 6A methylation activity of methyltransferase like 7A (METTL7A). RIP, MeRIP-seq, and RNA–protein pull down for assessing the interaction between long non-cording RNAs (LncRNAs) and RNA binding proteins were performed. Adipocyte-specific enhancer of zeste homolog 2 (EZH2) knockout mice and MM-xenografted mice were used for evaluating MM therapeutic response in vivo.

          Results

          Exosomes collected from MM patient adipocytes protect MM cells from chemotherapy-induced apoptosis. Two LncRNAs in particular, LOC606724 and SNHG1, are significantly upregulated in MM cells after exposure to adipocyte exosomes. The raised LncRNA levels in MM cells are positively correlated to worse outcomes in patients, indicating their clinical relevancy in MM. The functional roles of adipocyte exosomal LOC606724 or SNHG1 in inhibition of MM cell apoptosis are determined by knockdown in adipocytes or overexpression in MM cells. We discovered the interactions between LncRNAs and RNA binding proteins and identified methyltransferase like 7A (METTL7A) as an RNA methyltransferase. MM cells promote LncRNA package into adipocyte exosomes through METTL7A-mediated LncRNA m 6A methylation. Exposure of adipocytes to MM cells enhances METTL7A activity in m 6A methylation through EZH2-mediated protein methylation.

          Conclusion

          This study elucidates an unexplored mechanism of how adipocyte-rich microenvironment exacerbates MM therapeutic resistance and indicates a potential strategy to improve therapeutic efficacy by blocking this vicious exosome-mediated cycle.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s13046-021-02209-w.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Functional Classification and Experimental Dissection of Long Noncoding RNAs

          Over the last decade, it has been increasingly demonstrated that the genomes of many species are pervasively transcribed, resulting in the production of numerous long noncoding RNAs (lncRNAs). At the same time, it is now appreciated that many types of DNA regulatory elements, such as enhancers and promoters, regularly initiate bidirectional transcription. Thus, discerning functional noncoding transcripts from a vast transcriptome is a paramount priority, and challenge, for the lncRNA field. In this review, we aim to provide a conceptual and experimental framework for classifying and elucidating lncRNA function. We categorize lncRNA loci into those that regulate gene expression in cis versus those that perform functions in trans , and propose an experimental approach to dissect lncRNA activity based on these classifications. These strategies to further understand lncRNAs promise to reveal new and unanticipated biology, with great potential to advance our understanding of normal physiology and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation

            N 6-methyladenosine (m6A) is the most prevalent and reversible internal modification in mammalian messenger and non-coding RNAs. We report here that human METTL14 catalyzes m6A RNA methylation. Together with METTL3, the only previously known m6A methyltransferase, these two proteins form a stable heterodimer core complex of METTL3-14 that functions in cellular m6A deposition on mammalian nuclear RNAs. WTAP, a mammalian splicing factor, can interact with this complex and affect this methylation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reassessment of Exosome Composition

              The heterogeneity of small extracellular vesicles and presence of non-vesicular extracellular matter have led to debate about contents and functional properties of exosomes. Here, we employ high-resolution density gradient fractionation and direct immunoaffinity capture to precisely characterize the RNA, DNA, and protein constituents of exosomes and other non-vesicle material. Extracellular RNA, RNA-binding proteins and other cellular proteins are differentially expressed in exosomes and non-vesicle compartments. Argonaute 1–4, glycolytic enzymes and cytoskeletal proteins are absent from exosomes. We identify Annexin A1 as a specific marker for microvesicles that are shed directly from the plasma membrane. We further show that small extracellular vesicles are not vehicles of active DNA release. Instead, we propose a new model for active secretion of extracellular DNA through an autophagy- and multivesicular endosome-dependent, but exosome-independent mechanism. This study demonstrates the need for a reassessment of exosome composition and offers a framework for a clearer understanding of extracellular vesicle heterogeneity. A reassessment of exosome composition establishes the differential distribution of protein, RNA, and DNA between small extracellular vesicles and non-vesicular extracellular matter and establishes that small extracellular vesicles are not vehicles of active DNA release.
                Bookmark

                Author and article information

                Contributors
                jyang2@houstonmethodist.org
                Journal
                J Exp Clin Cancer Res
                J Exp Clin Cancer Res
                Journal of Experimental & Clinical Cancer Research : CR
                BioMed Central (London )
                0392-9078
                1756-9966
                3 January 2022
                3 January 2022
                2022
                : 41
                : 4
                Affiliations
                [1 ]GRID grid.63368.38, ISNI 0000 0004 0445 0041, Houston Methodist Cancer Center, , Research Institute Houston Methodist Hospital, ; Houston, TX 77030 USA
                [2 ]GRID grid.12955.3a, ISNI 0000 0001 2264 7233, Cancer Research Center, School of Medicine, , Xiamen University, ; Xiamen, 361102 China
                [3 ]GRID grid.240145.6, ISNI 0000 0001 2291 4776, Department of Hematopathology, , The University of Texas MD Anderson Cancer Center, ; Houston, TX 77030 USA
                Article
                2209
                10.1186/s13046-021-02209-w
                8722039
                34980213
                846e3c98-a283-4ba8-97e8-275e6b7b880c
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 27 July 2021
                : 4 December 2021
                Funding
                Funded by: the national institutes of health
                Award ID: CA190863
                Award ID: CA193362
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2022

                Oncology & Radiotherapy
                myeloma,adipocytes,exosomes,lncrna m6a methylation,therapeutics
                Oncology & Radiotherapy
                myeloma, adipocytes, exosomes, lncrna m6a methylation, therapeutics

                Comments

                Comment on this article