32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Blocking EZH2 methylation transferase activity by GSK126 decreases stem cell-like myeloma cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          EZH2 is a critical epigenetic regulator that is deregulated in various types of cancers including multiple myeloma (MM). In the present study, we hypothesized that targeting EZH2 might induce apoptosis in myeloma cells including stem cell-like cells (CSCs). We investigated the effect of EZH2 inhibition on MM cells using a potent inhibitor (GSK126). The results showed that GSK126 effectively abrogated the methylated histone 3 (H3K27me3) level in MM.1S and LP1 cells, and inhibited the number of live cells and colony formation in soft agar of six MM cell lines. GSK126 induced massive apoptosis in MM.1S, LP1 and RPMI8226 cells. Progressive release of mitochondrial cytochrome c and AIF into the cytosol was detected in GSK126-treated MM cells. GSK126 treatment elicited caspase-3-dependent MCL-1 cleavage with accumulation of proapoptotic truncated MCL-1. These results suggested that GSK126 triggers the intrinsic mitochondrial apoptosis pathway. Enhanced apoptosis was observed in the combination of GSK126 with bortezomib. Using ALDH and side population (SP) assays to characterize CSCs, we found that GSK126 eliminated the stem-like myeloma cells by blocking the Wnt/β-catenin pathway. The in vivo anti-tumor effect of GSK126 was confirmed by using RPMI8226 cells in a xenograft mouse model. In conclusion, our findings suggest that EZH2 inactivation by GSK126 is effective in killing MM cells and CSCs as a single agent or in combination with bortezomib. Clinical trial of GSK126 in patients with MM may be warranted.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Targeting EZH2 in cancer.

          Recent genomic studies have resulted in an emerging understanding of the role of chromatin regulators in the development of cancer. EZH2, a histone methyl transferase subunit of a Polycomb repressor complex, is recurrently mutated in several forms of cancer and is highly expressed in numerous others. Notably, both gain-of-function and loss-of-function mutations occur in cancers but are associated with distinct cancer types. Here we review the spectrum of EZH2-associated mutations, discuss the mechanisms underlying EZH2 function, and synthesize a unifying perspective that the promotion of cancer arises from disruption of the role of EZH2 as a master regulator of transcription. We further discuss EZH2 inhibitors that are now showing early signs of promise in clinical trials and also additional strategies to combat roles of EZH2 in cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells.

            Glioblastoma multiforme (GBM) displays cellular hierarchies harboring a subpopulation of stem-like cells (GSCs). Enhancer of Zeste Homolog 2 (EZH2), the lysine methyltransferase of Polycomb repressive complex 2, mediates transcriptional repression of prodifferentiation genes in both normal and neoplastic stem cells. An oncogenic role of EZH2 as a transcriptional silencer is well established; however, additional functions of EZH2 are incompletely understood. Here, we show that EZH2 binds to and methylates STAT3, leading to enhanced STAT3 activity by increased tyrosine phosphorylation of STAT3. The EZH2-STAT3 interaction preferentially occurs in GSCs relative to non-stem bulk tumor cells, and it requires a specific phosphorylation of EZH2. Inhibition of EZH2 reverses the silencing of Polycomb target genes and diminishes STAT3 activity, suggesting therapeutic strategies. Copyright © 2013 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation.

              Epigenetic alterations have been increasingly implicated in oncogenesis. Analysis of Drosophila mutants suggests that Polycomb and SWI/SNF complexes can serve antagonistic developmental roles. However, the relevance of this relationship to human disease is unclear. Here, we have investigated functional relationships between these epigenetic regulators in oncogenic transformation. Mechanistically, we show that loss of the SNF5 tumor suppressor leads to elevated expression of the Polycomb gene EZH2 and that Polycomb targets are broadly H3K27-trimethylated and repressed in SNF5-deficient fibroblasts and cancers. Further, we show antagonism between SNF5 and EZH2 in the regulation of stem cell-associated programs and that Snf5 loss activates those programs. Finally, using conditional mouse models, we show that inactivation of Ezh2 blocks tumor formation driven by Snf5 loss. Copyright © 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                10 January 2017
                2 December 2016
                : 8
                : 2
                : 3396-3411
                Affiliations
                1 Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China
                Author notes
                Correspondence to: Jingxuan Pan, jingx_pan@ 123456163.com
                Article
                13773
                10.18632/oncotarget.13773
                5356890
                27926488
                fad3063b-f959-465d-a94d-c6eb859efa16
                Copyright: © 2017 Zeng et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 23 May 2016
                : 21 November 2016
                Categories
                Research Paper

                Oncology & Radiotherapy
                ezh2 inhibitor,gsk126,multiple myeloma,apoptosis,cancer stem cells
                Oncology & Radiotherapy
                ezh2 inhibitor, gsk126, multiple myeloma, apoptosis, cancer stem cells

                Comments

                Comment on this article