39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neutrophil-Derived CCL3 Is Essential for the Rapid Recruitment of Dendritic Cells to the Site of Leishmania major Inoculation in Resistant Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neutrophils are rapidly and massively recruited to sites of microbial infection, where they can influence the recruitment of dendritic cells. Here, we have analyzed the role of neutrophil released chemokines in the early recruitment of dendritic cells (DCs) in an experimental model of Leishmania major infection. We show in vitro, as well as during infection, that the parasite induced the expression of CCL3 selectively in neutrophils from L. major resistant mice. Neutrophil-secreted CCL3 was critical in chemotaxis of immature DCs, an effect lost upon CCL3 neutralisation. Depletion of neutrophils prior to infection, as well as pharmacological or genetic inhibition of CCL3, resulted in a significant decrease in DC recruitment at the site of parasite inoculation. Decreased DC recruitment in CCL3 −/− mice was corrected by the transfer of wild type neutrophils at the time of infection. The early release of CCL3 by neutrophils was further shown to have a transient impact on the development of a protective immune response. Altogether, we identified a novel role for neutrophil-secreted CCL3 in the first wave of DC recruitment to the site of infection with L. major, suggesting that the selective release of neutrophil-secreted chemokines may regulate the development of immune response to pathogens.

          Author Summary

          When infectious agents enter our body, neutrophils are the first cells recruited to the scene. In addition to their capacity to kill microbes, neutrophils secrete molecules that attract other cells also involved in immune defense, such as dendritic cells (DCs). Here, we investigate the secretion of DC-attracting chemokines by neutrophils after inoculation of mice with Leishmania major, a protozoan parasite that can cause long-lasting, skin ulcers in man. Following parasite inoculation, most inbred strains of mice (e.g.C57BL/6) develop self-resolving lesions, while in a few strains (e.g. BALB/c) lesions fail to heal. We report here that in “healer” C57BL/6 mice, higher numbers of DCs were attracted at the site of infection than in “non-healer” BALB/c mice. DC recruitment correlated with secretion by neutrophils of the chemokine CCL3, as indeed a markedly decreased DC recruitment was observed in C57BL/6 mice depleted of neutrophils or deprived of the capacity to produce CCL3. DC recruitment was restored upon transfer of normal neutrophils to CCL3 deficient mice. Our results reveal a crucial role for neutrophil-secreted CCL3 in early recruitment of DCs in L. major-infected “healer” mice, and suggest that the type of chemokine secreted by neutrophils will have consequences in the launching of pathogen-specific immune response.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Selective Recruitment of Immature and Mature Dendritic Cells by Distinct Chemokines Expressed in Different Anatomic Sites

          DCs (dendritic cells) function as sentinels of the immune system. They traffic from the blood to the tissues where, while immature, they capture antigens. They then leave the tissues and move to the draining lymphoid organs where, converted into mature DC, they prime naive T cells. This suggestive link between DC traffic pattern and functions led us to investigate the chemokine responsiveness of DCs during their development and maturation. DCs were differentiated either from CD34+ hematopoietic progenitor cells (HPCs) cultured with granulocyte/macrophage colony–stimulating factor (GM-CSF) plus tumor necrosis factor (TNF)-α or from monocytes cultured with GM-CSF plus interleukin 4. Immature DCs derived from CD34+ HPCs migrate most vigorously in response to macrophage inflammatory protein (MIP)-3α, but also to MIP-1α and RANTES (regulated on activation, normal T cell expressed and secreted). Upon maturation, induced by either TNF-α, lipopolysaccharide, or CD40L, DCs lose their response to these three chemokines when they acquire a sustained responsiveness to a single other chemokine, MIP-3β. CC chemokine receptor (CCR)6 and CCR7 are the only known receptors for MIP-3α and MIP-3β, respectively. The observation that CCR6 mRNA expression decreases progressively as DCs mature, whereas CCR7 mRNA expression is sharply upregulated, provides a likely explanation for the changes in chemokine responsiveness. Similarly, MIP-3β responsiveness and CCR7 expression are induced upon maturation of monocyte- derived DCs. Furthermore, the chemotactic response to MIP-3β is also acquired by CD11c+ DCs isolated from blood after spontaneous maturation. Finally, detection by in situ hybridization of MIP-3α mRNA only within inflamed epithelial crypts of tonsils, and of MIP-3β mRNA specifically in T cell–rich areas, suggests a role for MIP-3α/CCR6 in recruitment of immature DCs at site of injury and for MIP-3β/CCR7 in accumulation of antigen-loaded mature DCs in T cell–rich areas.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Migration of dendritic cell subsets and their precursors.

            The ability of dendritic cells (DCs) to initiate and orchestrate immune responses is a consequence of their localization within tissues and their specialized capacity for mobilization. The migration of a given DC subset is typified by a restricted capacity for recirculation, contrasting markedly with T cells. Routes of DC migration into lymph nodes differ notably for distinct DC subsets. Here, we compare the distinct migratory patterns of plasmacytoid DCs (pDCs), CD8alpha(+) DCs, Langerhans cells, and conventional myeloid DCs and discuss how the highly regulated patterns of DC migration in vivo may affect their roles in immunity. Finally, to gain a more molecular appreciation of the specialized migratory properties of DCs, we review the signaling cascades that govern the process of DC migration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An immunomodulatory function for neutrophils during the induction of a CD4+ Th2 response in BALB/c mice infected with Leishmania major.

              The possible immunomodulatory role of polymorphonuclear leukocytes (PMN) in CD4+ T lymphocyte differentiation in mice was examined by studying the effect of transient depletion of PMN during the early phase after Leishmania major delivery. A single injection of the PMN-depleting NIMP-R14 mAb 6 h before infection with L. major prevented the early burst of IL-4 mRNA transcription otherwise occurring in the draining lymph node of susceptible BALB/c mice. Since this early burst of IL-4 mRNA transcripts had previously been shown to instruct Th2 differentiation in mice from this strain, we examined the effect of PMN depletion on Th subset differentiation at later time points after infection. The transient depletion of PMN in BALB/c mice was sufficient to inhibit Th2 cell development otherwise occurring after L. major infection. Decreased Th2 responses were paralleled with partial resolution of the footpad lesions induced by L. major. Furthermore, draining lymph node-derived CD4+ T cells from PMN-depleted mice remained responsive to IL-12 after L. major infection, unlike those of infected BALB/c mice receiving control Ab. PMN depletion had no effect when the NIMP-R14 mAb was injected 24 h postinfection. The protective effect of PMN depletion was shown to be IL-12 dependent, as concomitant neutralization of IL-12 reversed the protective effect of PMN depletion. These results suggest a role for an early wave of PMN in the development of the Th2 response characteristic of mice susceptible to infection with L. major.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                February 2010
                February 2010
                5 February 2010
                : 6
                : 2
                : e1000755
                Affiliations
                [1 ]Department of Biochemistry, WHO Immunology Research and Training Center, University of Lausannne, Epalinges, Switzerland
                [2 ]Institut Pasteur, Département de Parasitologie et Mycologie, Unité d'Immunophysiologie et Parasitisme Intracellulaire, Paris, France
                [3 ]Merck-Serono Geneva Research Center, Geneva, Switzerland
                Imperial College London, United Kingdom
                Author notes

                Conceived and designed the experiments: AEIP FTC. Performed the experiments: MC SBA DA FA. Analyzed the data: MC FTC. Contributed reagents/materials/analysis tools: GM AEIP. Wrote the paper: FTC. Contributed to the design of the experiments: MC. Contributed to the writing of the manuscript: MC GM. Input in the design and analysis of data: PL.

                Article
                09-PLPA-RA-1001R3
                10.1371/journal.ppat.1000755
                2816696
                20140197
                830fa1ac-b63a-476e-bc9b-60e271eee737
                Charmoy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 19 June 2009
                : 6 January 2010
                Page count
                Pages: 12
                Categories
                Research Article
                Immunology/Cellular Microbiology and Pathogenesis
                Immunology/Immunity to Infections
                Immunology/Innate Immunity
                Infectious Diseases/Protozoal Infections

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article