37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structural Plasticity of Dendritic Spines Requires GSK3α and GSK3β

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although memories appear to be elusive phenomena, they are stored in the network of physical connections between neurons. Dendritic spines, which are actin-rich dendritic protrusions, serve as the contact points between networked neurons. The spines’ shape contributes to the strength of signal transmission. To acquire and store information, dendritic spines must remain plastic, i.e., able to respond to signals, by changing their shape. We asked whether glycogen synthase kinase (GSK) 3α and GSK3β, which are implicated in diseases with neuropsychiatric symptoms, such as Alzheimer's disease, bipolar disease and schizophrenia, play a role in a spine structural plasticity. We used Latrunculin B, an actin polymerization inhibitor, and chemically induced Long-Term Depression to trigger fast spine shape remodeling in cultured hippocampal neurons. Spine shrinkage induced by either stimulus required GSK3α activity. GSK3β activity was only important for spine structural changes after treatment with Latrunculin B. Our results indicate that GSK3α is an essential component for short-term spine structural plasticity. This specific function should be considered in future studies of neurodegenerative diseases and neuropsychiatric conditions that originate from suboptimal levels of GSK3α/β activity.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          LTP inhibits LTD in the hippocampus via regulation of GSK3beta.

          Glycogen synthase kinase-3 (GSK3) has been implicated in major neurological disorders, but its role in normal neuronal function is largely unknown. Here we show that GSK3beta mediates an interaction between two major forms of synaptic plasticity in the brain, N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP) and NMDA receptor-dependent long-term depression (LTD). In rat hippocampal slices, GSK3beta inhibitors block the induction of LTD. Furthermore, the activity of GSK3beta is enhanced during LTD via activation of PP1. Conversely, following the induction of LTP, there is inhibition of GSK3beta activity. This regulation of GSK3beta during LTP involves activation of NMDA receptors and the PI3K-Akt pathway and disrupts the ability of synapses to undergo LTD for up to 1 hr. We conclude that the regulation of GSK3beta activity provides a powerful mechanism to preserve information encoded during LTP from erasure by subsequent LTD, perhaps thereby permitting the initial consolidation of learnt information.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Autism-related deficits via dysregulated eIF4E-dependent translational control.

            Hyperconnectivity of neuronal circuits due to increased synaptic protein synthesis is thought to cause autism spectrum disorders (ASDs). The mammalian target of rapamycin (mTOR) is strongly implicated in ASDs by means of upstream signalling; however, downstream regulatory mechanisms are ill-defined. Here we show that knockout of the eukaryotic translation initiation factor 4E-binding protein 2 (4E-BP2)-an eIF4E repressor downstream of mTOR-or eIF4E overexpression leads to increased translation of neuroligins, which are postsynaptic proteins that are causally linked to ASDs. Mice that have the gene encoding 4E-BP2 (Eif4ebp2) knocked out exhibit an increased ratio of excitatory to inhibitory synaptic inputs and autistic-like behaviours (that is, social interaction deficits, altered communication and repetitive/stereotyped behaviours). Pharmacological inhibition of eIF4E activity or normalization of neuroligin 1, but not neuroligin 2, protein levels restores the normal excitation/inhibition ratio and rectifies the social behaviour deficits. Thus, translational control by eIF4E regulates the synthesis of neuroligins, maintaining the excitation-to-inhibition balance, and its dysregulation engenders ASD-like phenotypes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus.

              Brief bath application of N-methyl-D-aspartate (NMDA) to hippocampal slices produces long-term synaptic depression (LTD) in CA1 that is (1) sensitive to postnatal age, (2) saturable, (3) induced postsynaptically, (4) reversible, and (5) not associated with a change in paired pulse facilitation. Chemically induced LTD (Chem-LTD) and homosynaptic LTD are mutually occluding, suggesting a common expression mechanism. Using phosphorylation site-specific antibodies, we found that induction of chem-LTD produces a persistent dephosphorylation of the GluR1 subunit of AMPA receptors at serine 845, a cAMP-dependent protein kinase (PKA) substrate, but not at serine 831, a substrate of protein kinase C (PKC) and calcium/calmodulin-dependent protein kinase II (CaMKII). These results suggest that dephosphorylation of AMPA receptors is an expression mechanism for LTD and indicate an unexpected role of PKA in the postsynaptic modulation of excitatory synaptic transmission.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                24 July 2015
                2015
                : 10
                : 7
                : e0134018
                Affiliations
                [1 ]The International Institute of Molecular and Cell Biology, Warsaw, Poland
                [2 ]Laboratory of Neurobiology, The Nencki Institute, Warsaw, Poland
                [3 ]Centre of New Technologies, University of Warsaw, Warsaw, Poland
                University of Nebraska Medical Center, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: IAC AG JJ. Performed the experiments: IAC AG MU JM MD. Analyzed the data: IAC AG MD JJ. Wrote the paper: IAC AG JJ.

                Article
                PONE-D-15-02998
                10.1371/journal.pone.0134018
                4514647
                26207897
                8048cff4-955d-4957-a1c0-4322b144a626
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 27 January 2015
                : 3 July 2015
                Page count
                Figures: 5, Tables: 3, Pages: 16
                Funding
                This research was supported by the Polish National Science Centre—( http://www.ncn.gov.pl/) (2011/01/M/NZ3/05413, 2011/01/B/NZ3/05397 and 2011/01/N/NZ3/05409), ERA-NET NEURON/06/2011 - ( http://www.neuron-eranet.eu) (co-financed by NCRD) and FP7 European Union grant (#223276, “NeuroGSK3”). JJ is a recipient of "Mistrz" Professorial subsidy from the Foundation for Polish Science. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article