0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Remdesivir inhibits Porcine epidemic diarrhea virus infection in vitro

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Porcine Epidemic Diarrhea Virus (PEDV) is a highly contagious and pathogenic virus that causes symptoms such as diarrhea, vomiting, weight loss, and even death in piglets. Due to its high transmission rate, PEDV has resulted in significant global losses. Although some vaccines have been developed and utilized to prevent PEDV, their effectiveness is limited due to the virus's mutations. Therefore, it is imperative to investigate new strategies to combat PEDV. Remdesivir, a classic antiviral drug for coronaviruses, has been proven in our experiment to effectively suppress PEDV replication in Vero and LLC-PK1 cells. Additionally, the cell experiment demonstrated its direct inhibition of PEDV RNA-dependent RNA polymerase (RdRp) enzyme activity. Molecular docking simulations were employed to predict the binding site of remdesivir and PEDV RdRp. Moreover, we observed that remdesivir does not impact the production of inflammatory factors and exhibits antagonistic effects with exogenous nucleosides. Furthermore, we conducted RNA-Seq analysis to investigate the global changes in transcriptome of infected cells treated with remdesivir. Overall, our findings indicate that remdesivir holds promise as a potential candidate for the treatment of PEDV infection.

          Highlights

          • Remdesivir inhibits PEDV infection in Vero cells and LLC-PK1 cells in a dose-dependent manner.

          • Remdesivir effectively blocks PEDV replication.

          • Remdesivir inhibits PEDV RNA-dependent RNA polymerase activity.

          • Exogenous Nucleosides Attenuate Antiviral Effect of Remdesivir.

          • Remdesivir could recovery the transcriptome changes caused by viral infection.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          A new coronavirus-like particle associated with diarrhea in swine

          Summary Coronavirus-like particles were detected by electron microscopy in the intestinal contents of pigs during a diarrheal outbreak on 4 swine breeding farms. Diarrhea was reproduced in experimental pigs with one of the isolates, designated CV777, which was found to be distinct from the 2 known porcine coronaviruses, transmissible gastroenteritis virus and hemagglutinating encephalomyelitis virus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Mechanism of Inhibition of Ebola Virus RNA-Dependent RNA Polymerase by Remdesivir

            Remdesivir (GS-5734) is a 1′-cyano-substituted adenosine nucleotide analogue prodrug that shows broad-spectrum antiviral activity against several RNA viruses. This compound is currently under clinical development for the treatment of Ebola virus disease (EVD). While antiviral effects have been demonstrated in cell culture and in non-human primates, the mechanism of action of Ebola virus (EBOV) inhibition for remdesivir remains to be fully elucidated. The EBOV RNA-dependent RNA polymerase (RdRp) complex was recently expressed and purified, enabling biochemical studies with the relevant triphosphate (TP) form of remdesivir and its presumptive target. In this study, we confirmed that remdesivir-TP is able to compete for incorporation with adenosine triphosphate (ATP). Enzyme kinetics revealed that EBOV RdRp and respiratory syncytial virus (RSV) RdRp incorporate ATP and remdesivir-TP with similar efficiencies. The selectivity of ATP against remdesivir-TP is ~4 for EBOV RdRp and ~3 for RSV RdRp. In contrast, purified human mitochondrial RNA polymerase (h-mtRNAP) effectively discriminates against remdesivir-TP with a selectivity value of ~500-fold. For EBOV RdRp, the incorporated inhibitor at position i does not affect the ensuing nucleotide incorporation event at position i+1. For RSV RdRp, we measured a ~6-fold inhibition at position i+1 although RNA synthesis was not terminated. Chain termination was in both cases delayed and was seen predominantly at position i+5. This pattern is specific to remdesivir-TP and its 1′-cyano modification. Compounds with modifications at the 2′-position show different patterns of inhibition. While 2′-C-methyl-ATP is not incorporated, ara-ATP acts as a non-obligate chain terminator and prevents nucleotide incorporation at position i+1. Taken together, our biochemical data indicate that the major contribution to EBOV RNA synthesis inhibition by remdesivir can be ascribed to delayed chain termination. The long distance of five residues between the incorporated nucleotide analogue and its inhibitory effect warrant further investigation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Outbreak of Porcine Epidemic Diarrhea in Suckling Piglets, China

              To the Editor: Beginning in October 2010, porcine epidemic diarrhea (PED), caused by a coronaviral infection affecting pigs, emerged in China in an outbreak characterized by high mortality rates among suckling piglets. The outbreak overwhelmed >10 provinces in southern China, and >1,000,000 piglets died. This outbreak was distinguished by ≈100% illness among piglets after birth (predominantly within 7 days and sometimes within only a few hours) and death rates of 80%–100% (Technical Appendix Table 1). Few sows or boars showed any clinical signs during the outbreak, which is not consistent with a recent report from Thailand ( 1 ). In that outbreak during late 2007, pigs of all ages were affected, exhibiting different degrees of diarrhea and no appetite. We characterized the genetic variation of the PED virus (PEDV) that caused a large-scale outbreak in China during 2010–2011 and compared it with viruses in other outbreaks. We also report a possible novel transmission pathway for PEDV. A total of 177 samples (intestine, stool, and maternal milk) were collected from pigs from different farms who had diarrhea; 100% of farms had >1 porcine sample positive for PEDV. A total of 125/177 porcine samples were confirmed as positive for PEDV by reverse transcription PCR using primers as described ( 2 ). PEDV was detected in 105 (82.0%) of 128 fecal samples and 20 (40.8%) of 49 sow milk samples. Piglets infected with PEDV showed mild hemorrhage, undigested curdled milk in the stomach, and thin-walled intestines with severe mucosal atrophy and foamy fluid (data not shown). The spike (S) gene of the family Coronaviridae has a high degree of variation and can induce neutralizing antibody ( 3 ). Reverse transcription PCR products of the 651-bp partial S gene of PEDV and the deduced amino acid sequences were aligned by using ClustalW (www.genome.jp/tools/clustalw), and a neighbor-joining tree with 1,000 bootstraps was constructed. Sequences of the S genes from this outbreak were 99.1%–100.0% homologous and had 88.7%–98.9% nt identity with all reference strains (Technical Appendix Table 2), 98.5%–98.9% with Thailand strains, and 94.5%–95.1% with vaccine strain CV777. The partial S gene deduced amino acid sequences were compared and also showed a high degree of homology (98.0%–100.0%); they had 85.3%–98.7% identity with all reference strains listed in Technical Appendix Table 2, 98.0%–98.7% with Thailand strains, and 93.3%–94.7% with vaccine strain CV777 (data not shown). Phylogenetic analysis indicated that the PEDV in the China outbreak was different from foreign and other domestic strains on the basis of the reported partial S gene sequences. All new strains were clustered in the same branch, close to the cluster of Thailand strains, and far from the cluster of vaccine strain CV777 (Figure). Figure Phylogenetic tree constructed by using the neighbor-joining method based on the 9 porcine epidemic diarrhea virus (PEDV) sequences identified in a study of porcine epidemic diarrhea in China. Partially amplified spike genes of the PEDV isolates plus 18 PEDV sequences downloaded from GenBank were compared. Sequences included in each cluster are listed in Technical Appendix Table 3. Strains from Thailand and China and the CV777 vaccine strain are indicated. Scale bar indicates nucleotide substitutions per site. In the China outbreak, PEDV caused severe diarrheal disease in piglets; heavy economic losses in many provinces resulted, despite use of commercial vaccines (inactivated transmissible gastroenteritis [TGEV H] and porcine epidemic diarrhea [CV777]). To determine why the vaccines showed poor efficacy, we investigated evolution of the virus. Comparison of amino acid sequences from isolates from the outbreak and from the CV777 vaccine strain showed 9 amino acid mutations of fragments containing major hydrophilic regions: 16 (L→H), 18 (S→G), 22 (V→I), 44 (T→S), 89 (G→S), 100 (A→E), 107 (L→F), 130 (I→V) and 160 (I→F) (Technical Appendix Figure, panel A). Three of these 9 mutations were at positions 16, 18, and 22 in the isolates from China; they influenced the hydrophobicity of the S protein as compared with that for CV777 (Technical Appendix Figure, panel B). Phylogenic analysis showed that strain CV777 did not cluster with current common strains and showed considerable genetic distance from them. Isolates in the outbreak in China had only a minor nucleotide sequence variation from the Thailand isolates, indicating that the virus has a high genetic relatedness to the Southeast Asia strain. However, previous studies showed that isolates from Europe, South Korea, and China were serologically identical to the prototype CV777 strain ( 1 , 4 ). To our knowledge, fecal–oral transmission is probably the main or only route of PEDV transmission ( 5 – 7 ). In our study, if a fecal sample from a sick piglet was found to be positive for PEDV, we also collected and studied milk from its mother. These results showed that PEDV was present in sow milk (Technical Appendix Table 3), but the detection rate was lower for these samples (40.8%) than for the fecal samples (82.0%). On the basis of these results, we hypothesize that sow milk could represent a possible (and potentially major) route for the vertical transmission of PEDV from sow to suckling piglet. This hypothesis could be indirectly verified by our field observation that piglet death rates decreased as a result of fostering (data not shown). Our findings show that PEDV was identified not only in fecal samples from sick piglets, as expected, but also in the milk of the sow, which suggests vertical transmission of the virus. Supplementary Material Technical Appendix Current farms status in this study, China.
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                02 November 2023
                November 2023
                02 November 2023
                : 9
                : 11
                : e21468
                Affiliations
                [a ]Shanghai Collaborative Innovation Center of Agri-Seeds / School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
                [b ]Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
                [c ]Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yang ling, Xianyang 712100, China
                Author notes
                []Corresponding author. Shanghai Collaborative Innovation Center of Agri-Seeds / School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China. wangz@ 123456sjtu.edu.cn
                [∗∗ ]Corresponding author. Shanghai Collaborative Innovation Center of Agri-Seeds / School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China. zbyang@ 123456sjtu.edu.cn
                Article
                S2405-8440(23)08676-0 e21468
                10.1016/j.heliyon.2023.e21468
                10663732
                7e7df993-31ab-4500-ba19-c80a91c8190a
                © 2023 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 2 July 2023
                : 9 October 2023
                : 21 October 2023
                Categories
                Research Article

                porcine epidemic diarrhea virus,remdesivir,replication inhibition,rdrp,rna-seq

                Comments

                Comment on this article