45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulation of red cell life-span, erythropoiesis, senescence, and clearance

      editorial

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The number of red blood cells (RBCs) and their properties are optimized by nature for most efficient oxygen delivery from the lungs to hypoxic periphery. Changes in metabolic requirements or environmental oxygen availability quickly translate to modulation of the RBC number, blood rheology, oxygen affinity of hemoglobin, and even of vascular tone. Inability to match the changes in oxygen demand may be fatal and requires therapeutic intervention. The recent advances in the ongoing intensive investigations of the mechanisms in control of regulation of erythropoiesis, RBC maturation and aging, as well as the processes involved in recognition of senescent RBCs and their clearance make up the present volume. It all starts from within the mesoderm, the fetal liver and from the adult bone marrow where primitive or definitive erythropoiesis takes place (Palis, 2014). Facilitated RBC production may be induced promptly “on demand” in extended oxygen requirements upon ascent to the high altitude and quickly reversed when extra RBC mass is without benefit any more (Risso et al., 2014). Exercise and professional sport increase RBC turnover and maximize oxygen delivery to the tissues (Mairbäurl, 2013). Maturation and aging of RBCs is accompanied by multiple processes occurring at various rates driving the circulating RBCs from adolescence to senescence within approximately 120 days (Lew and Tiffert, 2013; Lutz and Bogdanova, 2013). The resulting “markers of senescence” are recognized by the macrophages and clearance of RBCs is promptly initiated (de Back et al., 2014). Premature clearance is a hallmark of various disorders associated with anemia. In each case one or multiple markers of senescence appear prematurely. Those include excessive oxidative stress (Mohanty et al., 2014), excessive cation leak with the following dehydration (Wang et al., 2014), decrease in RBC size and loss of RBC membrane through vesiculation (Alaarg et al., 2013), metabolic abnormalities (Vives-Corrons et al., 2013), or following auto-immune diseases (Lutz and Bogdanova, 2013). Blood storage damages RBCs facilitating aging. As a result clearance of transfused cells is dramatically facilitated (Bosman, 2013; Flatt et al., 2014). The present compilation does not only give an overview of the variety of opinions reflecting the current understanding of the mechanisms of erythropoiesis, aging, and clearance of RBCs. We hope that it also provides the base for future lively discussions of the up-standing problems in this rapidly developing research area. Conflict of interest statement The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Primitive and definitive erythropoiesis in mammals

          Red blood cells (RBCs), which constitute the most abundant cell type in the body, come in two distinct flavors- primitive and definitive. Definitive RBCs in mammals circulate as smaller, anucleate cells during fetal and postnatal life, while primitive RBCs circulate transiently in the early embryo as large, nucleated cells before ultimately enucleating. Both cell types are formed from lineage-committed progenitors that generate a series of morphologically identifiable precursors that enucleate to form mature RBCs. While definitive erythroid precursors mature extravascularly in the fetal liver and postnatal marrow in association with macrophage cells, primitive erythroid precursors mature as a semi-synchronous cohort in the embryonic bloodstream. While the cytoskeletal network is critical for the maintenance of cell shape and the deformability of definitive RBCs, little is known about the components and function of the cytoskeleton in primitive erythroblasts. Erythropoietin (EPO) is a critical regulator of late-stage definitive, but not primitive, erythroid progenitor survival. However, recent studies indicate that EPO regulates multiple aspects of terminal maturation of primitive murine and human erythroid precursors, including cell survival, proliferation, and the rate of terminal maturation. Primitive and definitive erythropoiesis share central transcriptional regulators, including Gata1 and Klf1, but are also characterized by the differential expression and function of other regulators, including myb, Sox6, and Bcl11A. Flow cytometry-based methodologies, developed to purify murine and human stage-specific erythroid precursors, have enabled comparative global gene expression studies and are providing new insights into the biology of erythroid maturation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Of macrophages and red blood cells; a complex love story

            Macrophages tightly control the production and clearance of red blood cells (RBC). During steady state hematopoiesis, approximately 1010 RBC are produced per hour within erythroblastic islands in humans. In these erythroblastic islands, resident bone marrow macrophages provide erythroblasts with interactions that are essential for erythroid development. New evidence suggests that not only under homeostasis but also under stress conditions, macrophages play an important role in promoting erythropoiesis. Once RBC have matured, these cells remain in circulation for about 120 days. At the end of their life span, RBC are cleared by macrophages residing in the spleen and the liver. Current theories about the removal of senescent RBC and the essential role of macrophages will be discussed as well as the role of macrophages in facilitating the removal of damaged cellular content from the RBC. In this review we will provide an overview on the role of macrophages in the regulation of RBC production, maintenance and clearance. In addition, we will discuss the interactions between these two cell types during transfer of immune complexes and pathogens from RBC to macrophages.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Red blood cell vesiculation in hereditary hemolytic anemia

              Hereditary hemolytic anemia encompasses a heterogeneous group of anemias characterized by decreased red blood cell survival because of inherited membrane, enzyme, or hemoglobin disorders. Affected red blood cells are more fragile, less deformable, and more susceptible to shear stress and oxidative damage, and show increased vesiculation. Red blood cells, as essentially all cells, constitutively release phospholipid extracellular vesicles in vivo and in vitro in a process known as vesiculation. These extracellular vesicles comprise a heterogeneous group of vesicles of different sizes and intracellular origins. They are described in literature as exosomes if they originate from multi-vesicular bodies, or as microvesicles when formed by a one-step budding process directly from the plasma membrane. Extracellular vesicles contain a multitude of bioactive molecules that are implicated in intercellular communication and in different biological and pathophysiological processes. Mature red blood cells release in principle only microvesicles. In hereditary hemolytic anemias, the underlying molecular defect affects and determines red blood cell vesiculation, resulting in shedding microvesicles of different compositions and concentrations. Despite extensive research into red blood cell biochemistry and physiology, little is known about red cell deformability and vesiculation in hereditary hemolytic anemias, and the associated pathophysiological role is incompletely assessed. In this review, we discuss recent progress in understanding extracellular vesicles biology, with focus on red blood cell vesiculation. Also, we review recent scientific findings on the molecular defects of hereditary hemolytic anemias, and their correlation with red blood cell deformability and vesiculation. Integrating bio-analytical findings on abnormalities of red blood cells and their microvesicles will be critical for a better understanding of the pathophysiology of hereditary hemolytic anemias.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                18 July 2014
                2014
                : 5
                : 269
                Affiliations
                [1] 1Research Center for Molecular Imaging and Screening, Medical School, Institute for Molecular Cell Biology, Saarland University Homburg/Saar, Germany
                [2] 2Vetsuisse Faculty, and the Zurich Center for Integrative Human Physiology, Institute of Veterinary Physiology, University of Zurich Zurich, Switzerland
                Author notes
                *Correspondence: lars_kaestner@me.com

                This article was submitted to Membrane Physiology and Membrane Biophysics, a section of the journal Frontiers in Physiology.

                Edited and reviewed by: Mario L. Diaz, Universidad de La Laguna, Spain

                Article
                10.3389/fphys.2014.00269
                4102833
                783a3b98-9a25-417d-a046-25fbf5d6ae54
                Copyright © 2014 Kaestner and Bogdanova.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 26 June 2014
                : 28 June 2014
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 12, Pages: 1, Words: 910
                Categories
                Physiology
                Editorial Article

                Anatomy & Physiology
                erythrocyte,erythropoiesis,senescence,clearance,blood storage,neocytolysis,vesiculation

                Comments

                Comment on this article