75
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Primitive and definitive erythropoiesis in mammals

      review-article
      Frontiers in Physiology
      Frontiers Media S.A.
      primitive erythropoiesis, definitive erythropoiesis, yolk sac, globin, cytoskeleton

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Red blood cells (RBCs), which constitute the most abundant cell type in the body, come in two distinct flavors- primitive and definitive. Definitive RBCs in mammals circulate as smaller, anucleate cells during fetal and postnatal life, while primitive RBCs circulate transiently in the early embryo as large, nucleated cells before ultimately enucleating. Both cell types are formed from lineage-committed progenitors that generate a series of morphologically identifiable precursors that enucleate to form mature RBCs. While definitive erythroid precursors mature extravascularly in the fetal liver and postnatal marrow in association with macrophage cells, primitive erythroid precursors mature as a semi-synchronous cohort in the embryonic bloodstream. While the cytoskeletal network is critical for the maintenance of cell shape and the deformability of definitive RBCs, little is known about the components and function of the cytoskeleton in primitive erythroblasts. Erythropoietin (EPO) is a critical regulator of late-stage definitive, but not primitive, erythroid progenitor survival. However, recent studies indicate that EPO regulates multiple aspects of terminal maturation of primitive murine and human erythroid precursors, including cell survival, proliferation, and the rate of terminal maturation. Primitive and definitive erythropoiesis share central transcriptional regulators, including Gata1 and Klf1, but are also characterized by the differential expression and function of other regulators, including myb, Sox6, and Bcl11A. Flow cytometry-based methodologies, developed to purify murine and human stage-specific erythroid precursors, have enabled comparative global gene expression studies and are providing new insights into the biology of erythroid maturation.

          Related collections

          Most cited references104

          • Record: found
          • Abstract: found
          • Article: not found

          Red cell membrane: past, present, and future.

          As a result of natural selection driven by severe forms of malaria, 1 in 6 humans in the world, more than 1 billion people, are affected by red cell abnormalities, making them the most common of the inherited disorders. The non-nucleated red cell is unique among human cell type in that the plasma membrane, its only structural component, accounts for all of its diverse antigenic, transport, and mechanical characteristics. Our current concept of the red cell membrane envisions it as a composite structure in which a membrane envelope composed of cholesterol and phospholipids is secured to an elastic network of skeletal proteins via transmembrane proteins. Structural and functional characterization of the many constituents of the red cell membrane, in conjunction with biophysical and physiologic studies, has led to detailed description of the way in which the remarkable mechanical properties and other important characteristics of the red cells arise, and of the manner in which they fail in disease states. Current studies in this very active and exciting field are continuing to produce new and unexpected revelations on the function of the red cell membrane and thus of the cell in health and disease, and shed new light on membrane function in other diverse cell types.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse.

            In this study, we have mapped the onset of hematopoietic development in the mouse embryo using colony-forming progenitor assays and PCR-based gene expression analysis. With this approach, we demonstrate that commitment of embryonic cells to hematopoietic fates begins in proximal regions of the egg cylinder at the mid-primitive streak stage (E7.0) with the simultaneous appearance of primitive erythroid and macrophage progenitors. Development of these progenitors was associated with the expression of SCL/tal-1 and GATA-1, genes known to be involved in the development and maturation of the hematopoietic system. Kinetic analysis revealed the transient nature of the primitive erythroid lineage, as progenitors increased in number in the developing yolk sac until early somite-pair stages of development (E8.25) and then declined sharply to undetectable levels by 20 somite pairs (E9.0). Primitive erythroid progenitors were not detected in any other tissue at any stage of embryonic development. The early wave of primitive erythropoiesis was followed by the appearance of definitive erythroid progenitors (BFU-E) that were first detectable at 1-7 somite pairs (E8.25) exclusively within the yolk sac. The appearance of BFU-E was followed by the development of later stage definitive erythroid (CFU-E), mast cell and bipotential granulocyte/macrophage progenitors in the yolk sac. C-myb, a gene essential for definitive hematopoiesis, was expressed at low levels in the yolk sac just prior to and during the early development of these definitive erythroid progenitors. All hematopoietic activity was localized to the yolk sac until circulation was established (E8.5) at which time progenitors from all lineages were detected in the bloodstream and subsequently in the fetal liver following its development. This pattern of development suggests that definitive hematopoietic progenitors arise in the yolk sac, migrate through the bloodstream and seed the fetal liver to rapidly initiate the first phase of intraembryonic hematopoiesis. Together, these findings demonstrate that commitment to hematopoietic fates begins in early gastrulation, that the yolk sac is the only site of primitive erythropoiesis and that the yolk sac serves as the first source of definitive hematopoietic progenitors during embryonic development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis.

              Erythropoiesis is the process by which nucleated erythroid progenitors proliferate and differentiate to generate, every second, millions of nonnucleated red cells with their unique discoid shape and membrane material properties. Here we examined the time course of appearance of individual membrane protein components during murine erythropoiesis to throw new light on our understanding of the evolution of the unique features of the red cell membrane. We found that the accumulation of all of the major transmembrane and all skeletal proteins of the mature red blood cell, except actin, accrued progressively during terminal erythroid differentiation. At the same time, and in marked contrast, accumulation of various adhesion molecules decreased. In particular, the adhesion molecule, CD44 exhibited a progressive and dramatic decrease from proerythroblast to reticulocyte; this enabled us to devise a new strategy for distinguishing unambiguously between erythroblasts at successive developmental stages. These findings provide unique insights into the genesis of red cell membrane function during erythroblast differentiation and also offer a means of defining stage-specific defects in erythroid maturation in inherited and acquired red cell disorders and in bone marrow failure syndromes.
                Bookmark

                Author and article information

                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                15 December 2013
                28 January 2014
                2014
                : 5
                : 3
                Affiliations
                Department of Pediatrics, Center for Pediatric Biomedical Research, University of Rochester Medical Center Rochester, NY, USA
                Author notes

                Edited by: Lars Kaestner, Saarland University, Germany

                Reviewed by: Enrique Hernandez-Lemus, National Institute of Genomic Medicine, Mexico; Margaret H. Baron, Icahn School of Medicine at Mount Sinai, USA

                *Correspondence: James Palis, Department of Pediatrics, Center for Pediatric Biomedical Research, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY 14642, USA e-mail: james_palis@ 123456urmc.rochester.edu

                This article was submitted to Membrane Physiology and Membrane Biophysics, a section of the journal Frontiers in Physiology.

                Article
                10.3389/fphys.2014.00003
                3904103
                24478716
                e2ca5eea-03f6-4d56-aa64-96e3c5e49361
                Copyright © 2014 Palis.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 07 November 2013
                : 03 January 2014
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 116, Pages: 9, Words: 8860
                Categories
                Physiology
                Review Article

                Anatomy & Physiology
                yolk sac,cytoskeleton,globin,primitive erythropoiesis,definitive erythropoiesis

                Comments

                Comment on this article