2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Improved blood culture identification by FilmArray in cultures from regional hospitals compared with teaching hospital cultures

      , , , , ,
      Journal of Medical Microbiology
      Microbiology Society

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical evaluation of the FilmArray blood culture identification panel in identification of bacteria and yeasts from positive blood culture bottles.

          The FilmArray platform (FA; BioFire, Salt Lake City, UT) is a closed diagnostic system allowing high-order multiplex PCR analysis with automated readout of results directly from positive blood cultures in 1 h. In the present study, we evaluated the clinical performance of the FilmArray blood culture identification (BCID) panel, which includes 19 bacteria, five yeasts, and three antibiotic resistance genes. In total, 206 blood culture bottles were included in the study. The FilmArray could identify microorganisms in 153/167 (91.6%) samples with monomicrobial growth. Thirteen of the 167 (7.8%) microorganisms were not covered by the FilmArray BCID panel. In 6/167 (3.6%) samples, the FilmArray detected an additional microorganism compared to blood culture. When polymicrobial growth was analyzed, the FilmArray could detect all target microorganisms in 17/24 (71%) samples. Twelve blood culture bottles that yielded a positive signal but showed no growth were also negative by FilmArray. In 3/206 (1.5%) bottles, the FilmArray results were invalid. The results of the FilmArray were reproducible, as demonstrated by the testing and retesting of five bottles in the same day and a longitudinal follow-up of five other blood cultures up to 4 weeks. The present study shows that the FilmArray is a rapid identification method with high performance in direct identification of bacteria and yeasts from positive blood culture bottles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Accuracy of LightCycler(®) SeptiFast for the detection and identification of pathogens in the blood of patients with suspected sepsis: a systematic review and meta-analysis.

            There is an urgent need to develop diagnostic tests to improve the detection of pathogens causing life-threatening infection (sepsis). SeptiFast is a CE-marked multi-pathogen real-time PCR system capable of detecting DNA sequences of bacteria and fungi present in blood samples within a few hours. We report here a systematic review and meta-analysis of diagnostic accuracy studies of SeptiFast in the setting of suspected sepsis. A comprehensive search strategy was developed to identify studies that compared SeptiFast with blood culture in suspected sepsis. Methodological quality was assessed using QUADAS. Heterogeneity of studies was investigated using a coupled forest plot of sensitivity and specificity and a scatter plot in receiver operator characteristic space. Bivariate model method was used to estimate summary sensitivity and specificity. From 41 phase III diagnostic accuracy studies, summary sensitivity and specificity for SeptiFast compared with blood culture were 0.68 (95 % CI 0.63-0.73) and 0.86 (95 % CI 0.84-0.89) respectively. Study quality was judged to be variable with important deficiencies overall in design and reporting that could impact on derived diagnostic accuracy metrics. SeptiFast appears to have higher specificity than sensitivity, but deficiencies in study quality are likely to render this body of work unreliable. Based on the evidence presented here, it remains difficult to make firm recommendations about the likely clinical utility of SeptiFast in the setting of suspected sepsis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid Identification of Pathogens in Positive Blood Culture of Patients with Sepsis: Review and Meta-Analysis of the Performance of the Sepsityper Kit

              Sepsis is one of the leading causes of deaths, and rapid identification (ID) of blood stream infection is mandatory to perform adequate antibiotic therapy. The advent of MALDI-TOF Mass Spectrometry for the rapid ID of pathogens was a major breakthrough in microbiology. Recently, this method was combined with extraction methods for pathogens directly from positive blood cultures. This review summarizes the results obtained so far with the commercial Sepsityper sample preparation kit, which is now approved for in vitro diagnostic use. Summarizing data from 21 reports, the Sepsityper kit allowed a reliable ID on the species level of 80% of 3320 positive blood culture bottles. Gram negative bacteria resulted consistently in higher ID rates (90%) compared to Gram positive bacteria (76%) or yeast (66%). No relevant misidentifications on the genus level were reported at a log(score)cut-off of 1.6. The Sepsityper kit is a simple and reproducible method which extends the MALDI-TOF technology to positive blood culture specimens and shortens the time to result by several hours or even days. In combination with antibiotic stewardship programs, this rapid ID allows a much faster optimization of antibiotic therapy in patients with sepsis compared to conventional workflows.
                Bookmark

                Author and article information

                Journal
                Journal of Medical Microbiology
                Microbiology Society
                0022-2615
                1473-5644
                January 01 2016
                January 01 2016
                : 65
                : 1
                : 56-61
                Article
                10.1099/jmm.0.000194
                75d15698-cc70-4095-8e2f-3adc29dc4944
                © 2016
                History

                Comments

                Comment on this article