9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-wide Identification and Characterization of FCS-Like Zinc Finger (FLZ) Family Genes in Maize ( Zea mays) and Functional Analysis of ZmFLZ25 in Plant Abscisic Acid Response

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          FCS-like zinc finger family proteins (FLZs), a class of plant-specific scaffold of SnRK1 complex, are involved in the regulation of various aspects of plant growth and stress responses. Most information of FLZ family genes was obtained from the studies in Arabidopsis thaliana, whereas little is known about the potential functions of FLZs in crop plants. In this study, 37 maize FLZ ( ZmFLZ) genes were identified to be asymmetrically distributed on 10 chromosomes and can be divided into three subfamilies. Protein interaction and subcellular localization assays demonstrated that eight typical ZmFLZs interacted and partially co-localized with ZmKIN10, the catalytic α-subunit of the SnRK1 complex in maize leaf mesophyll cells. Expression profile analysis revealed that several ZmFLZs were differentially expressed across various tissues and actively responded to diverse abiotic stresses. In addition, ectopic overexpression of ZmFLZ25 in Arabidopsis conferred hypersensitivity to exogenous abscisic acid (ABA) and triggered higher expression of ABA-induced genes, pointing to the positive regulatory role of ZmFLZ25 in plant ABA signaling, a scenario further evidenced by the interactions between ZmFLZ25 and ABA receptors. In summary, these data provide the most comprehensive information on FLZ family genes in maize, and shed light on the biological function of ZmFLZ25 in plant ABA signaling.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TBtools - an integrative toolkit developed for interactive analyses of big biological data

            The rapid development of high-throughput sequencing techniques has led biology into the big-data era. Data analyses using various bioinformatics tools rely on programming and command-line environments, which are challenging and time-consuming for most wet-lab biologists. Here, we present TBtools (a Toolkit for Biologists integrating various biological data-handling tools), a stand-alone software with a user-friendly interface. The toolkit incorporates over 130 functions, which are designed to meet the increasing demand for big-data analyses, ranging from bulk sequence processing to interactive data visualization. A wide variety of graphs can be prepared in TBtools using a new plotting engine ("JIGplot") developed to maximize their interactive ability; this engine allows quick point-and-click modification of almost every graphic feature. TBtools is platform-independent software that can be run under all operating systems with Java Runtime Environment 1.6 or newer. It is freely available to non-commercial users at https://github.com/CJ-Chen/TBtools/releases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Abiotic Stress Signaling and Responses in Plants.

              As sessile organisms, plants must cope with abiotic stress such as soil salinity, drought, and extreme temperatures. Core stress-signaling pathways involve protein kinases related to the yeast SNF1 and mammalian AMPK, suggesting that stress signaling in plants evolved from energy sensing. Stress signaling regulates proteins critical for ion and water transport and for metabolic and gene-expression reprogramming to bring about ionic and water homeostasis and cellular stability under stress conditions. Understanding stress signaling and responses will increase our ability to improve stress resistance in crops to achieve agricultural sustainability and food security for a growing world population.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                29 March 2021
                April 2021
                : 22
                : 7
                : 3529
                Affiliations
                [1 ]Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; 2018010158@ 123456m.scnu.edu.cn (S.C.); 2018022421@ 123456m.scnu.edu.cn (X.L.); 20173029@ 123456m.scnu.edu.cn (C.Y.); 20185068@ 123456m.scnu.edu.cn (W.Y.); 2019010165@ 123456m.scnu.edu.cn (C.L.)
                [2 ]Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
                Author notes
                [†]

                These authors contributed equally to this work.

                Article
                ijms-22-03529
                10.3390/ijms22073529
                8037668
                33805388
                75632e96-29f3-4c07-a927-6c3b94cb0b12
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 20 January 2021
                : 18 March 2021
                Categories
                Article

                Molecular biology
                aba signaling,abiotic stresses,flz-domain protein,maize,zmflz,zmkin10
                Molecular biology
                aba signaling, abiotic stresses, flz-domain protein, maize, zmflz, zmkin10

                Comments

                Comment on this article