1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A positive feedback regulation of SnRK1 signaling by autophagy in plants

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1.

          Autophagy is a process by which components of the cell are degraded to maintain essential activity and viability in response to nutrient limitation. Extensive genetic studies have shown that the yeast ATG1 kinase has an essential role in autophagy induction. Furthermore, autophagy is promoted by AMP activated protein kinase (AMPK), which is a key energy sensor and regulates cellular metabolism to maintain energy homeostasis. Conversely, autophagy is inhibited by the mammalian target of rapamycin (mTOR), a central cell-growth regulator that integrates growth factor and nutrient signals. Here we demonstrate a molecular mechanism for regulation of the mammalian autophagy-initiating kinase Ulk1, a homologue of yeast ATG1. Under glucose starvation, AMPK promotes autophagy by directly activating Ulk1 through phosphorylation of Ser 317 and Ser 777. Under nutrient sufficiency, high mTOR activity prevents Ulk1 activation by phosphorylating Ulk1 Ser 757 and disrupting the interaction between Ulk1 and AMPK. This coordinated phosphorylation is important for Ulk1 in autophagy induction. Our study has revealed a signalling mechanism for Ulk1 regulation and autophagy induction in response to nutrient signalling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification.

            State-of-the-art light and electron microscopes are capable of acquiring large image datasets, but quantitatively evaluating the data often involves manually annotating structures of interest. This process is time-consuming and often a major bottleneck in the evaluation pipeline. To overcome this problem, we have introduced the Trainable Weka Segmentation (TWS), a machine learning tool that leverages a limited number of manual annotations in order to train a classifier and segment the remaining data automatically. In addition, TWS can provide unsupervised segmentation learning schemes (clustering) and can be customized to employ user-designed image features or classifiers.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method.

              Collective efforts of several laboratories in the past two decades have resulted in the development of various methods for Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana. Among these, the floral dip method is the most facile protocol and widely used for producing transgenic Arabidopsis plants. In this method, transformation of female gametes is accomplished by simply dipping developing Arabidopsis inflorescences for a few seconds into a 5% sucrose solution containing 0.01-0.05% (vol/vol) Silwet L-77 and resuspended Agrobacterium cells carrying the genes to be transferred. Treated plants are allowed to set seed which are then plated on a selective medium to screen for transformants. A transformation frequency of at least 1% can be routinely obtained and a minimum of several hundred independent transgenic lines generated from just two pots of infiltrated plants (20-30 plants per pot) within 2-3 months. Here, we describe the protocol routinely used in our laboratory for the floral dip method for Arabidopsis transformation. Transgenic Arabidopsis plants can be obtained in approximately 3 months.
                Bookmark

                Author and article information

                Contributors
                Journal
                Molecular Plant
                Molecular Plant
                16742052
                July 2023
                July 2023
                : 16
                : 7
                : 1192-1211
                Article
                10.1016/j.molp.2023.07.001
                37408307
                8e28016d-c101-4df7-8761-4f70fa9385ce
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article