0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Trends in enzyme mimics for enhanced catalytic cascade systems for bio-sensing of environmental pollutants -A review

      , , , ,
      Chemical Engineering Journal Advances
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references142

          • Record: found
          • Abstract: found
          • Article: not found

          CRISPR-Cas12–based detection of SARS-CoV-2

          An outbreak of betacoronavirus SARS-CoV-2 began in Wuhan, China in December 2019. COVID-19, the disease associated with infection, rapidly spread to produce a global pandemic. We report development of a rapid (<40 min), easy-to-implement and accurate CRISPR-Cas12-based lateral flow assay for detection of SARS-CoV-2 from respiratory swab RNA extracts. We validated our method using contrived reference samples and clinical samples from US patients, including 36 patients with COVID-19 infection and 42 patients with other viral respiratory infections. Our CRISPR-based DETECTR assay provides a visual and faster alternative to the US CDC SARS-CoV-2 real-time RT-PCR assay, with 95% positive predictive agreement and 100% negative predictive agreement.. SARS-CoV-2 in patient samples is detected in under an hour using a CRISPR-based lateral flow assay.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II)

            An updated comprehensive review to help researchers understand nanozymes better and in turn to advance the field. Nanozymes are nanomaterials with enzyme-like characteristics ( Chem. Soc. Rev. , 2013, 42 , 6060–6093). They have been developed to address the limitations of natural enzymes and conventional artificial enzymes. Along with the significant advances in nanotechnology, biotechnology, catalysis science, and computational design, great progress has been achieved in the field of nanozymes since the publication of the above-mentioned comprehensive review in 2013. To highlight these achievements, this review first discusses the types of nanozymes and their representative nanomaterials, together with the corresponding catalytic mechanisms whenever available. Then, it summarizes various strategies for modulating the activity and selectivity of nanozymes. After that, the broad applications from biomedical analysis and imaging to theranostics and environmental protection are covered. Finally, the current challenges faced by nanozymes are outlined and the future directions for advancing nanozyme research are suggested. The current review can help researchers know well the current status of nanozymes and may catalyze breakthroughs in this field.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Self-Assembled Copper-Amino Acid Nanoparticles for In Situ Glutathione “AND” H2O2 Sequentially Triggered Chemodynamic Therapy

              Nanoformulations that can respond to the specific tumor microenvironment (TME), such as a weakly acidic pH, low oxygen, and high glutathione (GSH), show promise for killing cancer cells with minimal invasiveness and high specificity. In this study, we demonstrate self-assembled copper-amino acid mercaptide nanoparticles (Cu-Cys NPs) for in situ glutathione-activated and H2O2-reinforced chemodynamic therapy for drug-resistant breast cancer. After endocytosis into tumor cells, the Cu-Cys NPs could first react with local GSH, induce GSH depletion, and reduce Cu2+ to Cu+. Subsequently, the generated Cu+ would react with local H2O2 to generate toxic hydroxyl radicals (·OH) via a Fenton-like reaction, which has a fast reaction rate in the weakly acidic TME, that are responsible for tumor-cell apoptosis. Due to the high GSH and H2O2 concentration in tumor cells, which sequentially triggers the redox reactions, Cu-Cys NPs exhibited relatively high cytotoxicity to cancer cells, whereas normal cells were left alive. The in vivo results also proved that Cu-Cys NPs efficiently inhibited drug-resistant breast cancer without causing obvious systemic toxicity. As a novel copper mercaptide nanoformulation responsive to the TME, these Cu-Cys NPs may have great potential in chemodynamic cancer therapy.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Chemical Engineering Journal Advances
                Chemical Engineering Journal Advances
                Elsevier BV
                26668211
                August 2023
                August 2023
                : 15
                : 100510
                Article
                10.1016/j.ceja.2023.100510
                7501c978-26e5-4fb1-86e2-373369ebf185
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article