Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Multiparameter Analysis-Based Electrochemiluminescent Assay for Simultaneous Detection of Multiple Biomarker Proteins on a Single Interface.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Electrochemiluminescent (ECL) assay with high sensitivity has been considered as one of the potential strategies to simultaneously detect multiple biomarker proteins. However, it was essential, but full of challenges, to overcome the limitation caused by cross reactions among different ECL indicators. Herein, the multiparameter analysis of ECL-potential signals demonstrated by multivariate linear algebraic equations was first employed in the simultaneous ECL assay to realize multiple detection of biomarker proteins on a single interface. Additionally, owing to the exponential amplification of self-synthesized nucleotide dendrimer by hybridization chain reaction (HCR) and rolling circle amplification (RCA), the developed simultaneous ECL assay showed improved sensitivity and satisfactory accuracy for the detection of N-terminal of the prohormone brain natriuretic peptide (BNPT) and cardiac troponin I (cTnI). Furthermore, a self-designed magnetic beads-based flow system was also employed to improve the feasibility and analysis speed of the simultaneous ECL assay. Importantly, the proposed strategy enabled simultaneous detection of multiple biomarker proteins simply, which could be readily expanded for the multiplexed estimation of various kinds of proteins and nucleotide sequence also, revealing a new avenue for early disease diagnosis with higher efficiency.

          Related collections

          Author and article information

          Journal
          Anal. Chem.
          Analytical chemistry
          American Chemical Society (ACS)
          1520-6882
          0003-2700
          May 03 2016
          : 88
          : 9
          Affiliations
          [1 ] Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR China.
          [2 ] Department of Clinical Biochemistry, Laboratory Sciences, Southwest Hospital, Third Military Medical University , 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China.
          Article
          10.1021/acs.analchem.6b00878
          27064937
          74163c3b-e30e-41a6-b673-ed8100a4e55f
          History

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content176

          Cited by8