4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Stem cell-laden hydrogel bioink for generation of high resolution and fidelity engineered tissues with complex geometries

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recently, 3D bioprinting has been explored as a promising technology for biomedical applications with the potential to create complex structures with precise features. Cell encapsulated hydrogels composed of materials such as gelatin, collagen, hyaluronic acid, alginate and polyethylene glycol have been widely used as bioinks for 3D bioprinting. However, since most hydrogel-based bioinks may not allow rapid stabilization immediately after 3D bioprinting, achieving high resolution and fidelity to the intended architecture is a common challenge in 3D bioprinting of hydrogels. In this study, we have utilized shear-thinning and self-healing ionically crosslinked oxidized and methacrylated alginates (OMAs) as a bioink, which can be rapidly gelled by its self-healing property after bioprinting and further stabilized via secondary crosslinking. It was successfully demonstrated that stem cell-laden calcium-crosslinked OMA hydrogels can be bioprinted into complicated 3D tissue structures with both high resolution and fidelity. Additional photocrosslinking enables long-term culture of 3D bioprinted constructs for formation of functional tissue by differentiation of encapsulated human mesenchymal stem cells.

          Graphical abstract

          Highlights

          • Hydrogel bioink system with shear-thinning and rapid self-healing properties.

          • Bioprinting of constructs with high shape fidelity and mechanical stability.

          • 3D printing of complex structures including precisely defined overhang geometries.

          • Potential to spatially control bioprinting of tissue-specific bioinks.

          • Independent spatial control of printed hydrogel physical and biochemical properties.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Highly stretchable and tough hydrogels.

          Hydrogels are used as scaffolds for tissue engineering, vehicles for drug delivery, actuators for optics and fluidics, and model extracellular matrices for biological studies. The scope of hydrogel applications, however, is often severely limited by their mechanical behaviour. Most hydrogels do not exhibit high stretchability; for example, an alginate hydrogel ruptures when stretched to about 1.2 times its original length. Some synthetic elastic hydrogels have achieved stretches in the range 10-20, but these values are markedly reduced in samples containing notches. Most hydrogels are brittle, with fracture energies of about 10 J m(-2) (ref. 8), as compared with ∼1,000 J m(-2) for cartilage and ∼10,000 J m(-2) for natural rubbers. Intense efforts are devoted to synthesizing hydrogels with improved mechanical properties; certain synthetic gels have reached fracture energies of 100-1,000 J m(-2) (refs 11, 14, 17). Here we report the synthesis of hydrogels from polymers forming ionically and covalently crosslinked networks. Although such gels contain ∼90% water, they can be stretched beyond 20 times their initial length, and have fracture energies of ∼9,000 J m(-2). Even for samples containing notches, a stretch of 17 is demonstrated. We attribute the gels' toughness to the synergy of two mechanisms: crack bridging by the network of covalent crosslinks, and hysteresis by unzipping the network of ionic crosslinks. Furthermore, the network of covalent crosslinks preserves the memory of the initial state, so that much of the large deformation is removed on unloading. The unzipped ionic crosslinks cause internal damage, which heals by re-zipping. These gels may serve as model systems to explore mechanisms of deformation and energy dissipation, and expand the scope of hydrogel applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hydrogels in regenerative medicine.

            Hydrogels, due to their unique biocompatibility, flexible methods of synthesis, range of constituents, and desirable physical characteristics, have been the material of choice for many applications in regenerative medicine. They can serve as scaffolds that provide structural integrity to tissue constructs, control drug and protein delivery to tissues and cultures, and serve as adhesives or barriers between tissue and material surfaces. In this work, the properties of hydrogels that are important for tissue engineering applications and the inherent material design constraints and challenges are discussed. Recent research involving several different hydrogels polymerized from a variety of synthetic and natural monomers using typical and novel synthetic methods are highlighted. Finally, special attention is given to the microfabrication techniques that are currently resulting in important advances in the field.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Concepts of extracellular matrix remodelling in tumour progression and metastasis

              Tissues are dynamically shaped by bidirectional communication between resident cells and the extracellular matrix (ECM) through cell-matrix interactions and ECM remodelling. Tumours leverage ECM remodelling to create a microenvironment that promotes tumourigenesis and metastasis. In this review, we focus on how tumour and tumour-associated stromal cells deposit, biochemically and biophysically modify, and degrade tumour-associated ECM. These tumour-driven changes support tumour growth, increase migration of tumour cells, and remodel the ECM in distant organs to allow for metastatic progression. A better understanding of the underlying mechanisms of tumourigenic ECM remodelling is crucial for developing therapeutic treatments for patients.
                Bookmark

                Author and article information

                Contributors
                Journal
                Bioact Mater
                Bioact Mater
                Bioactive Materials
                KeAi Publishing
                2452-199X
                22 December 2021
                September 2022
                22 December 2021
                : 15
                : 185-193
                Affiliations
                [a ]Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
                [b ]Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
                [c ]Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, 60607, USA
                [d ]Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, 60607, USA
                [e ]Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
                Author notes
                []Corresponding author. Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA. ealsberg@ 123456uic.edu
                Article
                S2452-199X(21)00555-7
                10.1016/j.bioactmat.2021.11.025
                8940765
                35386348
                72bcb4ff-2f08-4d41-aa3c-dcb254be3b61
                © 2021 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 16 September 2021
                : 15 November 2021
                : 16 November 2021
                Categories
                Article

                3d bioprinting,hydrogel bioink,biomaterial,high resolution and fidelity

                Comments

                Comment on this article