12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Constructions and Properties of Physically Cross-Linked Hydrogels Based on Natural Polymers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references199

          • Record: found
          • Abstract: found
          • Article: not found

          Highly stretchable and tough hydrogels.

          Hydrogels are used as scaffolds for tissue engineering, vehicles for drug delivery, actuators for optics and fluidics, and model extracellular matrices for biological studies. The scope of hydrogel applications, however, is often severely limited by their mechanical behaviour. Most hydrogels do not exhibit high stretchability; for example, an alginate hydrogel ruptures when stretched to about 1.2 times its original length. Some synthetic elastic hydrogels have achieved stretches in the range 10-20, but these values are markedly reduced in samples containing notches. Most hydrogels are brittle, with fracture energies of about 10 J m(-2) (ref. 8), as compared with ∼1,000 J m(-2) for cartilage and ∼10,000 J m(-2) for natural rubbers. Intense efforts are devoted to synthesizing hydrogels with improved mechanical properties; certain synthetic gels have reached fracture energies of 100-1,000 J m(-2) (refs 11, 14, 17). Here we report the synthesis of hydrogels from polymers forming ionically and covalently crosslinked networks. Although such gels contain ∼90% water, they can be stretched beyond 20 times their initial length, and have fracture energies of ∼9,000 J m(-2). Even for samples containing notches, a stretch of 17 is demonstrated. We attribute the gels' toughness to the synergy of two mechanisms: crack bridging by the network of covalent crosslinks, and hysteresis by unzipping the network of ionic crosslinks. Furthermore, the network of covalent crosslinks preserves the memory of the initial state, so that much of the large deformation is removed on unloading. The unzipped ionic crosslinks cause internal damage, which heals by re-zipping. These gels may serve as model systems to explore mechanisms of deformation and energy dissipation, and expand the scope of hydrogel applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Hydrogel bioelectronics

            Hydrogels have emerged as a promising bioelectronic interfacing material. This review discusses the fundamentals and recent advances in hydrogel bioelectronics. Bioelectronic interfacing with the human body including electrical stimulation and recording of neural activities is the basis of the rapidly growing field of neural science and engineering, diagnostics, therapy, and wearable and implantable devices. Owing to intrinsic dissimilarities between soft, wet, and living biological tissues and rigid, dry, and synthetic electronic systems, the development of more compatible, effective, and stable interfaces between these two different realms has been one of the most daunting challenges in science and technology. Recently, hydrogels have emerged as a promising material candidate for the next-generation bioelectronic interfaces, due to their similarities to biological tissues and versatility in electrical, mechanical, and biofunctional engineering. In this review, we discuss (i) the fundamental mechanisms of tissue–electrode interactions, (ii) hydrogels’ unique advantages in bioelectrical interfacing with the human body, (iii) the recent progress in hydrogel developments for bioelectronics, and (iv) rational guidelines for the design of future hydrogel bioelectronics. Advances in hydrogel bioelectronics will usher unprecedented opportunities toward ever-close integration of biology and electronics, potentially blurring the boundary between humans and machines.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Self-Healing Hydrogels

              Over the past few years, there has been a great deal of interest in the development of hydrogel materials with tunable structural, mechanical, and rheological properties, which exhibit rapid and autonomous self-healing and self-recovery for utilization in a broad range of applications, from soft robotics to tissue engineering. However, self-healing hydrogels generally either possess mechanically robust or rapid self-healing properties but not both. Hence, the development of a mechanically robust hydrogel material with autonomous self-healing on the time scale of seconds is yet to be fully realized. Here, the current advances in the development of autonomous self-healing hydrogels are reviewed. Specifically, methods to test self-healing efficiencies and recoveries, mechanisms of autonomous self-healing, and mechanically robust hydrogels are presented. The trends indicate that hydrogels that self-heal better also achieve self-healing faster, as compared to gels that only partially self-heal. Recommendations to guide future development of self-healing hydrogels are offered and the potential relevance of self-healing hydrogels to the exciting research areas of 3D/4D printing, soft robotics, and assisted health technologies is highlighted.
                Bookmark

                Author and article information

                Contributors
                Journal
                Polymer Reviews
                Polymer Reviews
                Informa UK Limited
                1558-3724
                1558-3716
                October 24 2022
                : 1-39
                Affiliations
                [1 ]School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
                [2 ]Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
                [3 ]Sports & Medicine Integration Research Center (SMIRC), Capital University of Physical Education and Sports, Beijing, China
                Article
                10.1080/15583724.2022.2137525
                46999aed-c0be-4476-aebd-03a4ede961a6
                © 2022
                History

                Comments

                Comment on this article