29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neurobiological links between stress and anxiety

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Stress and anxiety have intertwined behavioral and neural underpinnings. These commonalities are critical for understanding each state, as well as their mutual interactions. Grasping the mechanisms underlying this bidirectional relationship will have major clinical implications for managing a wide range of psychopathologies. After briefly defining key concepts for the study of stress and anxiety in pre-clinical models, we present circuit, as well as cellular and molecular mechanisms involved in either or both stress and anxiety. First, we review studies on divergent circuits of the basolateral amygdala (BLA) underlying emotional valence processing and anxiety-like behaviors, and how norepinephrine inputs from the locus coeruleus (LC) to the BLA are responsible for acute-stress induced anxiety. We then describe recent studies revealing a new role for mitochondrial function within the nucleus accumbens (NAc), defining individual trait anxiety in rodents, and participating in the link between stress and anxiety. Next, we report findings on the impact of anxiety on reward encoding through alteration of circuit dynamic synchronicity. Finally, we present work unravelling a new role for hypothalamic corticotropin-releasing hormone (CRH) neurons in controlling anxiety-like and stress-induce behaviors. Altogether, the research reviewed here reveals circuits sharing subcortical nodes and underlying the processing of both stress and anxiety. Understanding the neural overlap between these two psychobiological states, might provide alternative strategies to manage disorders such as post-traumatic stress disorder (PTSD).

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Stress revisited: a critical evaluation of the stress concept.

          With the steadily increasing number of publications in the field of stress research it has become evident that the conventional usage of the stress concept bears considerable problems. The use of the term 'stress' to conditions ranging from even the mildest challenging stimulation to severely aversive conditions, is in our view inappropriate. Review of the literature reveals that the physiological 'stress' response to appetitive, rewarding stimuli that are often not considered to be stressors can be as large as the response to negative stimuli. Analysis of the physiological response during exercise supports the view that the magnitude of the neuroendocrine response reflects the metabolic and physiological demands required for behavioural activity. We propose that the term 'stress' should be restricted to conditions where an environmental demand exceeds the natural regulatory capacity of an organism, in particular situations that include unpredictability and uncontrollability. Physiologically, stress seems to be characterized by either the absence of an anticipatory response (unpredictable) or a reduced recovery (uncontrollable) of the neuroendocrine reaction. The consequences of this restricted definition for stress research and the interpretation of results in terms of the adaptive and/or maladaptive nature of the response are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo–pituitary–adrenocortical responsiveness

            Appropriate regulatory control of the hypothalamo-pituitary-adrenocortical stress axis is essential to health and survival. The following review documents the principle extrinsic and intrinsic mechanisms responsible for regulating stress-responsive CRH neurons of the hypothalamic paraventricular nucleus, which summate excitatory and inhibitory inputs into a net secretory signal at the pituitary gland. Regions that directly innervate these neurons are primed to relay sensory information, including visceral afferents, nociceptors and circumventricular organs, thereby promoting 'reactive' corticosteroid responses to emergent homeostatic challenges. Indirect inputs from the limbic-associated structures are capable of activating these same cells in the absence of frank physiological challenges; such 'anticipatory' signals regulate glucocorticoid release under conditions in which physical challenges may be predicted, either by innate programs or conditioned stimuli. Importantly, 'anticipatory' circuits are integrated with neural pathways subserving 'reactive' responses at multiple levels. The resultant hierarchical organization of stress-responsive neurocircuitries is capable of comparing information from multiple limbic sources with internally generated and peripherally sensed information, thereby tuning the relative activity of the adrenal cortex. Imbalances among these limbic pathways and homeostatic sensors are likely to underlie hypothalamo-pituitary-adrenocortical dysfunction associated with numerous disease processes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Optogenetic investigation of neural circuits underlying brain disease in animal models.

              Optogenetic tools have provided a new way to establish causal relationships between brain activity and behaviour in health and disease. Although no animal model captures human disease precisely, behaviours that recapitulate disease symptoms may be elicited and modulated by optogenetic methods, including behaviours that are relevant to anxiety, fear, depression, addiction, autism and parkinsonism. The rapid proliferation of optogenetic reagents together with the swift advancement of strategies for implementation has created new opportunities for causal and precise dissection of the circuits underlying brain diseases in animal models.
                Bookmark

                Author and article information

                Contributors
                Journal
                Neurobiol Stress
                Neurobiol Stress
                Neurobiology of Stress
                Elsevier
                2352-2895
                13 August 2019
                November 2019
                13 August 2019
                : 11
                : 100191
                Affiliations
                [a ]Hotchkiss Brain Institute. Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
                [b ]Department of Anesthesiology and Pain Medicine. Center for Neurobiology of Addiction, Pain, and Emotion. University of Washington. 1959 NE Pacific Street, J-wing Health Sciences. Seattle, WA 98195, USA
                [c ]Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, 97239, USA
                [d ]Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Station 19, CH, 1015, Lausanne, Switzerland
                [e ]Neurocentre Magendie, INSERM 1215, Université de Bordeaux, 146 Rue Léo Saignat, 33000 Bordeaux, France
                Author notes
                [* ]Corresponding author. anna.beyeler@ 123456inserm.fr
                Article
                S2352-2895(19)30043-8 100191
                10.1016/j.ynstr.2019.100191
                6712367
                31467945
                348543d6-e4d6-4713-a75a-8e9ed036f7fa
                © 2019 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 5 April 2019
                : 18 June 2019
                : 2 August 2019
                Categories
                Article from the Special Issue on Stress Neurobiology Workshop 2018; Edited by Lawrence Reagan,Richard Hunter and Matthew N. Hill

                neural circuits,optogenetics,mitochondria,corticotrophin releasing hormone,emotional valence

                Comments

                Comment on this article